carrying capacity

Author Topic: carrying capacity  (Read 115 times)

Offline khadijatul kobra

  • Jr. Member
  • **
  • Posts: 68
  • Test
    • View Profile
carrying capacity
« on: November 15, 2018, 08:31:33 PM »
Some aspects of a system's carrying capacity may involve matters such as available supplies of food, water, raw materials, and/or other similar resources. In addition, there are other factors that govern carrying capacity which may be less instinctive or less intuitive in nature, such as ever-increasing and/or ever-accumulating levels of wastes, damage, and/or eradication of essential components of any complex functioning system. Eradication of, for example, large or critical portions of any complex system (envision a space vehicle, for instance, or an airplane, or an automobile, or computer code, or the body components of a living vertebrate) can interrupt essential processes and dynamics in ways that induce systems failures or unexpected collapse. (As an example of these latter factors, the "carrying capacity" of a complex system such an airplane is more than a matter of available food, or water, or available seating, but also reflects total weight carried and presumes that its passengers do not damage, destroy, or eradicate parts, doors, windows, wings, engine parts, fuel, and oil, and so forth.) Thus, on a global scale, food and similar resources may affect planetary carrying capacity to some extent so long as Earth's human passengers do not dismantle, eradicate, or otherwise destroy critical biospheric life-support capacities for essential processes of self-maintenance, self-perpetuation, and self-repair.

Thus, carrying capacity interpretations that focus solely on resource limitations alone (such as food) may neglect wider functional factors. If the humans neither gain nor lose weight in the long-term, the calculation is fairly accurate. If the quantity of food is invariably equal to the "Y" amount, carrying capacity has been reached. Humans, with the need to enhance their reproductive success (see Richard Dawkins' The Selfish Gene[verification needed]), understand that food supply can vary and also that other factors in the environment can alter humans' need for food. A house, for example, might mean that one does not need to eat as much to stay warm as one otherwise would. Over time, monetary transactions have replaced barter and local production, and consequently modified local human carrying capacity. However, purchases also impact regions thousands of miles away. For example, carbon dioxide from an automobile travels to the upper atmosphere. This led Paul R. Ehrlich to develop the I = PAT equation.