Why Natural Language Processing (NLP) is a core AI Technology

Author Topic: Why Natural Language Processing (NLP) is a core AI Technology  (Read 1405 times)

Offline khalid

  • Jr. Member
  • **
  • Posts: 84
  • Test
    • View Profile
Why Natural Language Processing (NLP) is a core AI Technology

    Natural language processing (NLP) is a branch of Artificial Intelligence (AI) that helps computers understand, interpret and manipulate human language. NLP draws from many disciplines, including computer science and computational linguistics, in its pursuit to fill the gap between human communication and computer understanding.

While natural language processing isn’t a new science, the technology is rapidly advancing thanks to an increased interest in human-to-machine communications, plus an availability of big data, powerful computing and enhanced algorithms.

As a human, you may speak and write in English, Spanish or Chinese. But a computer’s native language – known as machine code or machine language – is largely incomprehensible to most people. At your device’s lowest levels, communication occurs not with words but through millions of zeros and ones that produce logical actions.

Indeed, programmers used punch cards to communicate with the first computers 70 years ago. This manual and arduous process was understood by a relatively small number of people. Now you can say, “Alexa, I like this song,” and a device playing music in your home will lower the volume and reply, “OK. Rating saved,” in a human-like voice. Then it adapts its algorithm to play that song – and others like it – the next time you listen to that music station.

Let’s take a closer look at that interaction. Your device activated when it heard you speak, understood the unspoken intent in the comment, executed an action and provided feedback in a well-formed English sentence, all in the space of about five seconds. The complete interaction was made possible by NLP, along with other AI elements such as machine learning and deep learning.

    What is Natural Language Processing?

    History

The history of natural language processing generally started in the 1950s, although work can be found from earlier periods. In 1950, Alan Turing published an article titled “Intelligence” which proposed what is now called the Turing test as a criterion of intelligence.

    1950

The Georgetown experiment in 1954 involved fully automatic translation of more than sixty Russian sentences into English. The authors claimed that within three or five years, machine translation would be a solved problem. 

    1960

However, real progress was much slower, and after the ALPAC report in 1966, which found that ten-year-long research had failed to fulfill the expectations, funding for machine translation was dramatically reduced. Little further research in machine translation was conducted until the late 1980s, when the first statistical machine translation systems were developed. Some notably successful natural language processing systems developed in the 1960s were SHRDLU, a natural language system working in restricted “blocks worlds” with restricted vocabularies, and ELIZA, a simulation of a Rogerian psychotherapist, written by Joseph Weizenbaum between 1964 and 1966. Using almost no information about human thought or emotion, ELIZA sometimes provided a startlingly human-like interaction. When the “patient” exceeded the very small knowledge base, ELIZA might provide a generic response, for example, responding to “My head hurts” with “Why do you say your head hurts?”.

    1970

During the 1970s, many programmers began to write “conceptual ontologies”, which structured real-world information into computer-understandable data. Examples are MARGIE (Schank, 1975), SAM (Cullingford, 1978), PAM (Wilensky, 1978), TaleSpin (Meehan, 1976), QUALM (Lehnert, 1977), Politics (Carbonell, 1979), and Plot Units (Lehnert 1981). During this time, many chatbots were written including PARRY, Racter, and Jabberwacky.

    1980

Up to the 1980s, most natural language processing systems were based on complex sets of hand-written rules. Starting in the late 1980s, however, there was a revolution in natural language processing with the introduction of machine learning algorithms for language processing. This was due to both the steady increase in computational power (see Moore’s law) and the gradual lessening of the dominance of Chomskyantheories of linguistics (e.g. transformational grammar), whose theoretical underpinnings discouraged the sort of corpus linguistics that underlies the machine-learning approach to language processing. Some of the earliest-used machine learning algorithms, such as decision trees, produced systems of hard if-then rules similar to existing hand-written rules. However, part-of-speech tagging introduced the use of hidden Markov models to natural language processing, and increasingly, research has focused on statistical models, which make soft, probabilistic decisions based on attaching real-valued weights to the features making up the input data. The cache language models upon which many speech recognition systems now rely are examples of such statistical models. Such models are generally more robust when given unfamiliar input, especially input that contains errors (as is very common for real-world data), and produce more reliable results when integrated into a larger system comprising multiple subtasks.

    1990 to Current

Many of the notable early successes occurred in the field of machine translation, due especially to work at IBM Research, where successively more complicated statistical models were developed. These systems were able to take advantage of existing multilingual textual corpora that had been produced by the Parliament of Canada and the European Union as a result of laws calling for the translation of all governmental proceedings into all official languages of the corresponding systems of government. However, most other systems depended on corpora specifically developed for the tasks implemented by these systems, which was (and often continues to be) a major limitation in the success of these systems. As a result, a great deal of research has gone into methods of more effectively learning from limited amounts of data.

Recent research has increasingly focused on unsupervised and semi-supervised learning algorithms. Such algorithms are able to learn from data that has not been hand-annotated with the desired answers, or using a combination of annotated and non-annotated data. Generally, this task is much more difficult than supervised learning, and typically produces less accurate results for a given amount of input data. However, there is an enormous amount of non-annotated data available (including, among other things, the entire content of the World Wide Web), which can often make up for the inferior results if the algorithm used has a low enough time complexity to be practical.

In the 2010s, representation learning and deep neural network-style machine learning methods became widespread in natural language processing, due in part to a flurry of results showing that such techniques can achieve state-of-the-art results in many natural language tasks, for example in language modeling, parsing, and many others. Popular techniques include the use of word embeddings to capture semantic properties of words, and an increase in end-to-end learning of a higher-level task (e.g., question answering) instead of relying on a pipeline of separate intermediate tasks (e.g., part-of-speech tagging and dependency parsing). In some areas, this shift has entailed substantial changes in how NLP systems are designed, such that deep neural network-based approaches may be viewed as a new paradigm distinct from statistical natural language processing. For instance, the term neural machine translation (NMT) emphasizes the fact that deep learning-based approaches to machine translation directly learn sequence-to-sequence transformations, obviating the need for intermediate steps such as word alignment and language modeling that were used in statistical machine translation (SMT).

    Why is NLP important?

Large volumes of textual data

Natural language processing helps computers communicate with humans in their own language and scales other language-related tasks. For example, NLP makes it possible for computers to read text, hear speech, interpret it, measure sentiment and determine which parts are important.

Today’s machines can analyze more language-based data than humans, without fatigue and in a consistent, unbiased way. Considering the staggering amount of unstructured data that’s generated every day, from medical records to social media, automation will be critical to fully analyze text and speech data efficiently.
Structuring a highly unstructured data source

Human language is astoundingly complex and diverse. We express ourselves in infinite ways, both verbally and in writing. Not only are there hundreds of languages and dialects, but within each language is a unique set of grammar and syntax rules, terms and slang. When we write, we often misspell or abbreviate words, or omit punctuation. When we speak, we have regional accents, and we mumble, stutter and borrow terms from other languages.

While supervised and unsupervised learning, and specifically deep learning, are now widely used for modeling human language, there’s also a need for syntactic and semantic understanding and domain expertise that are not necessarily present in these machine learning approaches. NLP is important because it helps resolve ambiguity in language and adds useful numeric structure to the data for many downstream applications, such as speech recognition or text analytics......

Read More: https://witanworld.com/blog/2018/10/28/naturallanguageprocessing-nlp/