Show Posts

This section allows you to view all posts made by this member. Note that you can only see posts made in areas you currently have access to.


Topics - fahmidsadeque

Pages: 1 [2] 3 4
16
EEE / The God Particle: Part IV
« on: November 14, 2016, 08:15:48 PM »
The standard model can’t explain several towering mysteries about the universe that have their roots in the minuscule world of particles and forces. If there’s one truly extraordinary concept to emerge from the past century of inquiry, it’s that the cosmos we see was once smaller than an atom. This is why particle physicists talk about cosmology and cosmologists talk about particle physics: Our existence, our entire universe, emerged from things that happened at the smallest imaginable scale. The big bang theory tells us that the known universe once had no dimensions at all—no up or down, no left or right, no passage of time, and laws of physics beyond our vision.

How does an infinitely dense universe become a vast and spacious one? And how is it filled with matter? In theory, as the early universe expanded, energy should have condensed into equal amounts of matter and antimatter, which would then have annihilated each other on contact, reverting to pure energy. On paper, the universe should be empty. But it’s full of stars and planets and charming French villages and so on. The LHC experiments may help physicists understand our good fortune to be in a universe that grew with just enough more matter than antimatter.

What about the riddle of dark matter? Scrutiny of the motion of distant galaxies indicates that they are subject to more gravity than their visible matter could possibly account for. There must be some exotic hidden matter in the mix. A theory called supersymmetry could account for this: It states that every fundamental particle had a much more massive counterpart in the early universe. The electron might have had a hefty partner that physicists refer to as the selectron. The muon might have had the smuon. The quark might have had ... the squark. Many of those supersymmetric partners would have been unstable, but one kind may have been just stable enough to survive since the dawn of time. And those particles might, at this very second, be streaming through your body without interacting with your meat and bones. They might be dark matter.

17
EEE / The God Particle: Part III
« on: November 14, 2016, 08:14:21 PM »
Physics underwent one revolution after another. Einstein’s special theory of relativity (1905) begat the general theory of relativity (1915), and suddenly even such reliable concepts as absolute space and absolute time had been discarded in favor of a mind-boggling space-time fabric in which two events can never be said to be simultaneous. Matter bends space; space directs how matter moves. Light is both a particle and a wave. Energy and mass are inter- changeable. Reality is probabilistic and not deterministic: Einstein didn’t believe that God plays dice with the universe, but that became the scientific orthodoxy.

By the early 1930s Ernest Lawrence had invented the first circular particle accelerator, or “cyclotron.” It fit in his hand.

Now the U.S. government has an accelerator that’s hidden beneath several square miles of tallgrass prairie and a small herd of buffalo at its Fermilab facility west of Chicago. When you drive on the Junipero Serra freeway near Palo Alto, California, you pass directly over a two-mile linear accelerator. The LHC crosses the border between two countries. There are still physicists who do tabletop physics—who try to get big answers with modest means—but realistically you need huge, powerful, energetic devices to pry open the fabric of reality.

We know things today that Einstein, Rutherford, Max Planck, Niels Bohr, Werner Heisenberg, and the rest of the great physicists of a century ago couldn’t have imagined. But we’re nowhere near a final theory of physical reality. Molecules are made of atoms; atoms are made of particles called protons, neutrons, and electrons; protons and neutrons (which are the “hadrons” that give the collider its name) are made of odd things called quarks and gluons—but already we’re into a fuzzy zone. Are quarks fundamental particles, or made of something smaller yet? Electrons are believed to be fundamental, but you wouldn’t want to bet your life on it.

Still, theoretical physicists crave simplicity. They’d like to have a model of reality that snaps together neatly. Their standard model, developed in the 1960s and 1970s, is widely viewed as unwieldy, like a contraption with too many loose ends and knobs and dangling bits. It includes 57 fundamental particles, with no rhyme or reason to many of the numbers describing how the particles interact. “We had a theory that started out really beautiful and elegant,” says Joe Lykken, a theorist at Fermilab, “and then someone beat on it and made it really ugly.”

18
EEE / The God Particle: Part II
« on: November 14, 2016, 08:13:09 PM »
g that mad scientists will accidentally create a black hole that devours the Earth.

The more plausible fear is that the collider will fail to find the things that physicists insist must be lurking in the deep substrate of reality. Such a big machine needs to produce big science, big answers, something that can generate a headline as well as interesting particles. But even an endeavor of this scale isn’t going to answer all the important questions of matter and energy. Not a chance. This is because a century of particle physics has given us a fundamental truth: Reality doesn’t reveal its secrets easily.

Put it this way: The universe is a tough nut to crack.

Go back a little more than a century to the late 1800s, and look at the field of physics: a mature science, and rather complacent. There were those who believed there wasn’t much more to do than smooth out some rough edges in nature’s plan. There was a sensible order to things, a clockwork universe governed by Newtonian forces, with atoms as the foundation of matter. Atoms were indivisible by definition—the word comes from the Greek for “uncuttable.”

But then strange things started popping up in laboratories: x-rays, gamma rays, a mysterious phenomenon called radioactivity. Physicist J. J. Thomson discovered the electron. Atoms were not indivisible after all, but had constituents. Was it, as Thomson believed, a pudding, with electrons embedded like raisins? No. In 1911 physicist Ernest Rutherford announced that atoms are mostly empty space, their mass concentrated in a tiny nucleus orbited by electrons.

19
EEE / The God Particle: Part I
« on: November 14, 2016, 08:11:55 PM »
(written by Joel Achenbach)

If you were to dig a hole 300 feet straight down from the center of the charming French village of Crozet, you’d pop into a setting that calls to mind the subterranean lair of one of those James Bond villains. A garishly lit tunnel ten feet in diameter curves away into the distance, interrupted every few miles by lofty chambers crammed with heavy steel structures, cables, pipes, wires, magnets, tubes, shafts, catwalks, and enigmatic gizmos.

This technological netherworld is one very big scientific instrument, specifically, a particle accelerator-an atomic peashooter more powerful than any ever built. It’s called the Large Hadron Collider, and its purpose is simple but ambitious: to crack the code of the physical world; to figure out what the universe is made of; in other words, to get to the very bottom of things.

Starting sometime in the coming months, two beams of particles will race in opposite directions around the tunnel, which forms an underground ring 17 miles in circumference. The particles will be guided by more than a thousand cylindrical, supercooled magnets, linked like sausages. At four locations the beams will converge, sending the particles crashing into each other at nearly the speed of light. If all goes right, matter will be transformed by the violent collisions into wads of energy, which will in turn condense back into various intriguing types of particles, some of them never seen before. That’s the essence of experimental particle physics: You smash stuff together and see what other stuff comes out.

Those masses of equipment spaced along the tunnel will scrutinize the spray from the collisions. The largest, ATLAS, has a detector that’s seven stories tall. The heaviest, CMS (for Compact Muon Solenoid), is heftier than the Eiffel Tower. “Bigger is better if you’re searching for smaller” could be the motto at the European Organization for Nuclear Research, better known by its historic acronym CERN, the international laboratory that houses the Large Hadron Collider.

20
EEE / Large Hadron Collider of CERN
« on: November 14, 2016, 08:09:40 PM »
The following website of CERN will provide you enough resource on LHC
http://home.cern/topics/large-hadron-collider

21
EEE / Electrodynamic suspension
« on: November 14, 2016, 08:07:08 PM »
Electrodynamic suspension (EDS) is a form of magnetic levitation in which there are conductors which are exposed to time-varying magnetic fields. This induces eddy currents in the conductors that creates a repulsive magnetic field which holds the two objects apart.

These time varying magnetic fields can be caused by relative motion between two objects. In many cases, one magnetic field is a permanent field, such as a permanent magnet or a superconducting magnet, and the other magnetic field is induced from the changes of the field that occur as the magnet moves relative to a conductor in the other object.

Electrodynamic suspension can also occur when an electromagnet driven by an AC electrical source produces the changing magnetic field, in some cases, a linear induction motor generates the field.

EDS is used for maglev trains, such as the Japanese SCMaglev. It is also used for some classes of magnetically levitated bearings.

for details click on the following link:
https://en.wikipedia.org/wiki/Electrodynamic_suspension

22
EEE / Research Article:Dynamics of the Bogie of Maglev Train
« on: November 14, 2016, 08:05:30 PM »
Click on the following link to study Research Article:
Dynamics of the Bogie of Maglev Train with Distributed Magnetic Forces
https://www.hindawi.com/journals/sv/2015/896410/

25
EEE / 2-Dimensional Collision
« on: November 13, 2016, 11:25:32 PM »
 Collisions between objects are governed by laws of momentum and energy. When a collision occurs in an isolated system, the total momentum of the system of objects is conserved. Provided that there are no net external forces acting upon the objects, the momentum of all objects before the collision equals the momentum of all objects after the collision. If there are only two objects involved in the collision, then the momentum change of the individual objects are equal in magnitude and opposite in direction.

Certain collisions are referred to as elastic collisions. Elastic collisions are collisions in which both momentum and kinetic energy are conserved. The total system kinetic energy before the collision equals the total system kinetic energy after the collision. If total kinetic energy is not conserved, then the collision is referred to as an inelastic collision.

The animation below portrays the inelastic collision between two 1000-kg cars. The before- and after-collision velocities and momentum are shown in the data tables.
http://www.physicsclassroom.com/mmedia/momentum/2di.cfm

27
EEE / Propagation of an Electromagnetic Wave
« on: November 13, 2016, 11:22:46 PM »
 Electromagnetic waves are waves which can travel through the vacuum of outer space. Mechanical waves, unlike electromagnetic waves, require the presence of a material medium in order to transport their energy from one location to another. Sound waves are examples of mechanical waves while light waves are examples of electromagnetic waves.

Electromagnetic waves are created by the vibration of an electric charge. This vibration creates a wave which has both an electric and a magnetic component. An electromagnetic wave transports its energy through a vacuum at a speed of 3.00 x 108 m/s (a speed value commonly represented by the symbol c). The propagation of an electromagnetic wave through a material medium occurs at a net speed which is less than 3.00 x 108 m/s. This is depicted in the animation below.

The mechanism of energy transport through a medium involves the absorption and reemission of the wave energy by the atoms of the material. When an electromagnetic wave impinges upon the atoms of a material, the energy of that wave is absorbed. The absorption of energy causes the electrons within the atoms to undergo vibrations. After a short period of vibrational motion, the vibrating electrons create a new electromagnetic wave with the same frequency as the first electromagnetic wave. While these vibrations occur for only a very short time, they delay the motion of the wave through the medium. Once the energy of the electromagnetic wave is reemitted by an atom, it travels through a small region of space between atoms. Once it reaches the next atom, the electromagnetic wave is absorbed, transformed into electron vibrations and then reemitted as an electromagnetic wave. While the electromagnetic wave will travel at a speed of c (3 x 108 m/s) through the vacuum of interatomic space, the absorption and reemission process causes the net speed of the electromagnetic wave to be less than c. This is observed in the animation below.

The actual speed of an electromagnetic wave through a material medium is dependent upon the optical density of that medium. Different materials cause a different amount of delay due to the absorption and reemission process. Furthermore, different materials have their atoms more closely packed and thus the amount of distance between atoms is less. These two factors are dependent upon the nature of the material through which the electromagnetic wave is traveling. As a result, the speed of an electromagnetic wave is dependent upon the material through which it is traveling.

29
EEE / Schrodinger's Cat
« on: November 13, 2016, 11:18:07 PM »
Schrodinger's Cat experiment is one of the most famous experiment of quantum mechanics. To learn more:
http://www.iflscience.com/physics/schr%C3%B6dinger%E2%80%99s-cat-explained/

30
EEE / How Does Quantum Mechanics support Time Travel ?
« on: November 12, 2016, 11:55:00 PM »
Dear All. First think about it yourself.
You can read the following discussion:

http://mkaku.org/home/articles/the-physics-of-time-travel/



Pages: 1 [2] 3 4