Show Posts

This section allows you to view all posts made by this member. Note that you can only see posts made in areas you currently have access to.


Messages - bonny.cse

Pages: [1] 2 3 4
1
Science and Information / Scope of the ABE system
« on: February 28, 2020, 12:55:32 AM »
Two research teams from East China Normal University and Sun Yat-Sen University in China have developed and improved the ABE system in mouse and rat strains, which has great implications for human genetic disorders and gene therapy. The research has been published by Springer Nature in two articles in the open access journal Protein & Cell.

The human gene is composed of the bases Adenine (A), Thymine (T), Cytosine (C) and Guanine (G), which are arranged in a particular order to encode genetic information. The ABE system is able to generate a desired Adenine (A) to Guanine (G) conversion and therefore allows scientists to alter genetic codes with minimal undesired outcomes. Since almost half of human genetic diseases are caused by C/G to T/C mutation, which could be ideally corrected through ABE, this is a promising technology for therapeutic applications.

Mice and rats are two of the most critical model organisms for biological and medical studies because they can be easily bred and are physiologically similar to humans. Using genetically modified rodent models scientists have made significant progress in understanding human biology, disease pathology and the development of therapeutics for numerous diseases. However, it is not easy to generate mouse or rat strains containing point mutants identified in human diseases, even with targeted genome editing like CRISPR/Cas9.

In these studies, the researchers used the ABE system to efficiently generate three mice strains to mimic the genetic muscle degeneration disorder called Dunchenne Muscular Dystrophy (DMD). They also used a rat model to mimic the hereditary glycogen storage disease type II known as GSD?or Pompe disease. These models could be an important resource for testing innovative therapeutics, especially gene therapy.

"It is critical to expand the targeting scope of the ABE system and test its efficiency and editing window in cells and animals," says Dali Li.

His group at East China Normal University has enabled targeting of genomic sites that were not covered by the original ABE system. They used chemically modified "guide RNAs" (gRNAs) to enhance the overall editing efficiency.

"The early results are promising," Li says. "We are working hard to apply this powerful tool in preclinical therapeutic studies to develop novel gene therapy strategies for different human genetic disorders. I believe that clinical application will be in the near future, although the improvement of overall efficiency and the delivery system for ABE is a challenge."
ref-https://www.sciencedaily.com/releases/2018/07/180731103946.htm

2
Physiotherapy / Re: Life Style Exercise
« on: April 13, 2019, 02:39:05 PM »
informative.

3
Science and Information / Moon's water may be widespread and immobile
« on: November 05, 2018, 11:15:57 AM »
A new analysis of data from two lunar missions finds evidence that the Moon's water is widely distributed across the surface and is not confined to a particular region or type of terrain. The water appears to be present day and night, though it's not necessarily easily accessible.

The findings could help researchers understand the origin of the Moon's water and how easy it would be to use as a resource. If the Moon has enough water, and if it's reasonably convenient to access, future explorers might be able to use it as drinking water or to convert it into hydrogen and oxygen for rocket fuel or oxygen to breathe.

"We find that it doesn't matter what time of day or which latitude we look at, the signal indicating water always seems to be present," said Joshua Bandfield, a senior research scientist with the Space Science Institute in Boulder, Colorado, and lead author of the new study published in Nature Geoscience. "The presence of water doesn't appear to depend on the composition of the surface, and the water sticks around."

The results contradict some earlier studies, which had suggested that more water was detected at the Moon's polar latitudes and that the strength of the water signal waxes and wanes according to the lunar day (29.5 Earth days). Taking these together, some researchers proposed that water molecules can "hop" across the lunar surface until they enter cold traps in the dark reaches of craters near the north and south poles. In planetary science, a cold trap is a region that's so cold, the water vapor and other volatiles which come into contact with the surface will remain stable for an extended period of time, perhaps up to several billion years.

The debates continue because of the subtleties of how the detection has been achieved so far. The main evidence has come from remote-sensing instruments that measured the strength of sunlight reflected off the lunar surface. When water is present, instruments like these pick up a spectral fingerprint at wavelengths near 3 micrometers, which lies beyond visible light and in the realm of infrared radiation.

But the surface of the Moon also can get hot enough to "glow," or emit its own light, in the infrared region of the spectrum. The challenge is to disentangle this mixture of reflected and emitted light. To tease the two apart, researchers need to have very accurate temperature information.

Bandfield and colleagues came up with a new way to incorporate temperature information, creating a detailed model from measurements made by the Diviner instrument on NASA's Lunar Reconnaissance Orbiter, or LRO. The team applied this temperature model to data gathered earlier by the Moon Mineralogy Mapper, a visible and infrared spectrometer that NASA's Jet Propulsion Laboratory in Pasadena, California, provided for India's Chandrayaan-1 orbiter.

The new finding of widespread and relatively immobile water suggests that it may be present primarily as OH, a more reactive relative of H2O that is made of one oxygen atom and one hydrogen atom. OH, also called hydroxyl, doesn't stay on its own for long, preferring to attack molecules or attach itself chemically to them. Hydroxyl would therefore have to be extracted from minerals in order to be used.

The research also suggests that any H2O present on the Moon isn't loosely attached to the surface.

"By putting some limits on how mobile the water or the OH on the surface is, we can help constrain how much water could reach the cold traps in the polar regions," said Michael Poston of the Southwest Research Institute in San Antonio, Texas.

Sorting out what happens on the Moon could also help researchers understand the sources of water and its long-term storage on other rocky bodies throughout the solar system.

The researchers are still discussing what the findings tell them about the source of the Moon's water. The results point toward OH and/or H2O being created by the solar wind hitting the lunar surface, though the team didn't rule out that OH and/or H2O could come from the Moon itself, slowly released from deep inside minerals where it has been locked since the Moon was formed.

"Some of these scientific problems are very, very difficult, and it's only by drawing on multiple resources from different missions that are we able to hone in on an answer," said LRO project scientist John Keller of NASA's Goddard Space Flight Center in Greenbelt, Maryland.

LRO is managed by NASA's Goddard Space Flight Center in Greenbelt, Maryland, for the Science Mission Directorate at NASA Headquarters in Washington, D.C. JPL designed, built and manages the Diviner instrument.

ref-https://www.sciencedaily.com/releases/2018/02/180223122335.htm

4
Science and Information / Re: উপকারী ব্যাঙ
« on: August 28, 2018, 06:01:28 PM »
Nice!!

7
Interesting

8
Astronomers at ANU have found the fastest-growing black hole known in the Universe, describing it as a monster that devours a mass equivalent to our sun every two days.

The astronomers have looked back more than 12 billion years to the early dark ages of the Universe, when this supermassive black hole was estimated to be the size of about 20 billion suns with a one per cent growth rate every one million years.

"This black hole is growing so rapidly that it's shining thousands of times more brightly than an entire galaxy, due to all of the gases it sucks in daily that cause lots of friction and heat," said Dr Wolf from the ANU Research School of Astronomy and Astrophysics.

"If we had this monster sitting at the centre of our Milky Way galaxy, it would appear 10 times brighter than a full moon. It would appear as an incredibly bright pin-point star that would almost wash out all of the stars in the sky."

Dr Wolf said the energy emitted from this newly discovered supermassive black hole, also known as a quasar, was mostly ultraviolet light but also radiated x-rays.

"Again, if this monster was at the centre of the Milky Way it would likely make life on Earth impossible with the huge amounts of x-rays emanating from it," he said.

The SkyMapper telescope at the ANU Siding Spring Observatory detected this light in the near-infrared, as the light waves had red-shifted over the billions of light years to Earth.

"As the Universe expands, space expands and that stretches the light waves and changes their colour," Dr Wolf said.

"These large and rapidly-growing blackholes are exceedingly rare, and we have been searching for them with SkyMapper for several months now. The European Space Agency's Gaia satellite, which measures tiny motions of celestial objects, helped us find this supermassive black hole."

Dr Wolf said the Gaia satellite confirmed the object that they had found was sitting still, meaning that it was far away and it was a candidate to be a very large quasar.

The discovery of the new supermassive black hole was confirmed using the spectrograph on the ANU 2.3 metre telescope to split colours into spectral lines.

"We don't know how this one grew so large, so quickly in the early days of the Universe," Dr Wolf said.

"The hunt is on to find even faster-growing black holes."

Dr Wolf said as these kinds of black holes shine, they can be used as beacons to see and study the formation of elements in the early galaxies of the Universe.

"Scientists can see the shadows of objects in front of the supermassive black hole," he said.

"Fast-growing supermassive black holes also help to clear the fog around them by ionising gases, which makes the Universe more transparent."
ref-https://www.sciencedaily.com/releases/2018/05/180516105218.htm

9
Two research teams from East China Normal University and Sun Yat-Sen University in China have developed and improved the ABE system in mouse and rat strains, which has great implications for human genetic disorders and gene therapy. The research has been published by Springer Nature in two articles in the open access journal Protein & Cell.

The human gene is composed of the bases Adenine (A), Thymine (T), Cytosine (C) and Guanine (G), which are arranged in a particular order to encode genetic information. The ABE system is able to generate a desired Adenine (A) to Guanine (G) conversion and therefore allows scientists to alter genetic codes with minimal undesired outcomes. Since almost half of human genetic diseases are caused by C/G to T/C mutation, which could be ideally corrected through ABE, this is a promising technology for therapeutic applications.

Mice and rats are two of the most critical model organisms for biological and medical studies because they can be easily bred and are physiologically similar to humans. Using genetically modified rodent models scientists have made significant progress in understanding human biology, disease pathology and the development of therapeutics for numerous diseases. However, it is not easy to generate mouse or rat strains containing point mutants identified in human diseases, even with targeted genome editing like CRISPR/Cas9.

In these studies, the researchers used the ABE system to efficiently generate three mice strains to mimic the genetic muscle degeneration disorder called Dunchenne Muscular Dystrophy (DMD). They also used a rat model to mimic the hereditary glycogen storage disease type II known as GSD?or Pompe disease. These models could be an important resource for testing innovative therapeutics, especially gene therapy.

"It is critical to expand the targeting scope of the ABE system and test its efficiency and editing window in cells and animals," says Dali Li.

His group at East China Normal University has enabled targeting of genomic sites that were not covered by the original ABE system. They used chemically modified "guide RNAs" (gRNAs) to enhance the overall editing efficiency.

"The early results are promising," Li says. "We are working hard to apply this powerful tool in preclinical therapeutic studies to develop novel gene therapy strategies for different human genetic disorders. I believe that clinical application will be in the near future, although the improvement of overall efficiency and the delivery system for ABE is a challenge."
ref-https://www.sciencedaily.com/releases/2018/07/180731103946.htm

10
A group of Japanese researchers has discovered that neural inflammation caused by our innate immune system plays an unexpectedly important role in stress-induced depression. This insight could potentially lead to the development of new antidepressants targeting innate immune molecules. The findings were published on July 20 in the online edition of Neuron.

The joint study was led by Professor Tomoyuki Furuyashiki and Assistant Professor Shiho Kitaoka (Kobe University Graduate School of Medicine) in collaboration with Project Professor Shuh Narumiya (Kyoto University Graduate School of Medicine).

Previous research had already hinted at the link between inflammation and depression: increased levels of inflammation-related cytokines in the blood of patients suffering from depression, activation of microglia (inflammation-related cells in the brain) in depressive patients, and a high percentage of depression outbreaks in patients suffering from chronic inflammatory disease. However, the exact relationship between depression and inflammation still contains many unknowns.

Psychological stress caused by social and environmental factors can trigger a variety of changes in both mind and body. Moderate levels of stress will provoke a defensive response, while extreme stress can lower our cognitive functions, cause depression and elevated anxiety, and is a risk factor for mental illnesses. The research team focused on repeated social defeat stress (a type of environmental stress) with the aim of clarifying the mechanism that causes an emotional response to repeated stress.

First, they looked at changes of gene expression in the brain caused by repeated social defeat stress and found that repeated stress increased a putative ligand for the innate immune receptors TLR2 and TLR4 (TLR2/4) in the brain. Their next step was to investigate the role of TLR2/4 in repeated stress using a mouse with the TLR2/4 genes deleted. They found that TLR2/4-deficient mice did not show social avoidance or extreme anxiety when exposed to repeated stress. Repeated stress usually triggers microglial activation in specific areas of the brain such as the medial prefrontal cortex, causing impaired response and atrophy of neurons, but these responses were not present in the TLR2/4-deficient mice.

The research team then developed a method to selectively block the expression of TLR2/4 in the microglia of specific areas of the brain. By blocking the expression of TLR2/4 in the microglia of the medial prefrontal cortex, they managed to suppress depressive behavior in response to repeated social defeat stress. They found that repeated stress induced the expression of inflammation-related cytokines IL-1? and TNF? in the microglia of the medial prefrontal cortex via TLR2/4. The depressive behavior was suppressed by treating the medial prefrontal cortex with neutralizing antibodies for the inflammation-related cytokines.

These results show that repeated social defeat stress activates microglia in the medial prefrontal cortex via the innate immune receptors TLR2/4. This triggers the expression of inflammation-related cytokines IL-1? and TNF?, leading to the atrophy and impaired response of neurons in the medial prefrontal cortex, and causing depressive behavior.

Professor Furuyashiki says: "These findings demonstrate the importance of neural inflammation caused by the innate immune system for stress-induced depression. This could lead to the development of new antidepressant medication targeting innate immune molecules."
ref- https://www.sciencedaily.com/releases/2018/07/180719121806.htm

11
Researchers at Dartmouth College have revealed how a key protein functions during the millions of cell divisions that occur in the human body each minute. The research describes two separate but coordinated pulling actions generated by the protein dynein that ensure healthy cell division in humans and other organisms.

The Dartmouth research demonstrates for the first time that dynein employs both "side-on" and "end-on" forces to carry out its work during mitosis. The study also shows that dynein chooses which mechanism to activate depending on where the protein is located within the cell.

The study, published in the journal eLife, focuses on dynein in baker's yeast, an organism that features cells that function similarly to those in the human body. The research adds to the understanding of the mechanisms involved in cell reproduction and sheds light on a cellular-level mystery that has confounded researchers.

"For close to two decades researchers have strained to understand why dynein appears to behave differently in yeast," said Wei-Lih Lee, a professor of biological sciences at Dartmouth. "The discovery of the protein's dual role answers this question and allows us to learn even more about the regulation of dynein during cell division."

Dynein -- referred to as an "ancient motor protein"- is widely known for its role in carrying waste products from nerve terminals back to cell bodies in the spinal cord. The protein is also essential for processes like embryonic development and the steady maintenance of stem cells in the basal layers of the skin.

During cell division, dynein positions the mitotic spindle, a complex apparatus that allows cells to segregate genetic material. Once the spindle is aligned by dynein, DNA is distributed equally and the two daughter cells can survive.

"Positioning the mitotic spindle correctly is absolutely essential in order to have healthy cells, and it's dynein that performs that task," said Safia Omer, a graduate research assistant who was the lead author of the study.

To do its work, dynein uses two distinct pulling mechanisms. The first of these mechanisms, "side-on" pulling, applies lateral force to the mitotic spindle, similar to pulling on the side of a rope. The second mechanism, "end-on" pulling, pulls the spindle from its end, similar to the way a wood chipper draws in a log. This end-on pulling action also applies a brake to the spindle's movement and causes it to set in precisely the correct position.

Until the Dartmouth study, researchers were uncertain as to why dynein seemed to prefer one mechanism over the other depending on which organism it was in.

"We were puzzled as to why the 'end-on' pulling action didn't appear to exist in yeast, but it actually does. It was evading discovery for all of this time because this mechanism only exists for a short time and in a small location in the cell," said Lee.

In addition to discovering this dual-role for dynein, the Dartmouth research demonstrates that the protein only activates "side-on" pulling when it sits on the sides of the cell membrane, and pulls from the end when it sits on the apex of the cell. Also, the study uncovers an unexpected role for the cellular structure known as the endoplasmic reticulum in regulating dynein behavior.

According to the study, the role of dynein is most essential when creating asymmetric daughter cells, with one transforming into a tissue cell and the other remaining as a stem cell. If a mutation causes dynein to position the spindle incorrectly, the daughter cells would feature an abnormal fate leading to maladies like skin cancer or the "smooth brain" disease lissencephaly.

"Basic science such as this is an investment in the future," said Samuel Greenberg, an undergraduate student at Dartmouth who assisted with the research. "Understanding these processes could allow researchers to make candidate drugs to target specific problems in the pathway."

Future research will focus on how dynein switches from one pulling mechanism to the other to control the critical process of cell division.
ref- https://www.sciencedaily.com/releases/2018/08/180807100657.htm

12
"Ibuki" is a child-like android equipped with a moving unit. By acting with the human, having a conversation together and consequently sharing their experience, this robot is expected to become a conversational robot which is able to construct a deeper relationship with the human. With regards to the feasibility and the safety aspects, a set of wheels is adopted as its moving unit. The unit includes a pair of eccentricity wheels for horizontal body motion and a ball screw driven actuator for vertical body motion. This replicates the movement of a human's center of gravity position on the android robot and expresses a human-like movement even with the wheels. Also, having 47 degrees of freedom enables it to have various emotional expressions such as gestures and hand signs, in addition to different facial expressions.
Credit: Copyright ERATO ISHIGURO Symbiotic Human-Robot Interaction Project.

The conversational robot has received considerable attention in the recent research. However, research to date has not sufficiently explored the robot's "sense of conversing," the robot's "existence" and its "sociability." In response to this gap in the research, ERATO ISHIGURO symbiotic human-robot interaction project has launched, in which the project leader Prof. Hiroshi Ishiguro (Osaka Univ.) and his team members have developed a humanoid robot with the ability of a human-like conversation. In this project, we have focused on the affinity process that emerges during the move of the robot with a human. In order to promote an active role of conversational robots, a child-like android named "ibuki" was developed. "ibuki" was designed to be able to walk (move) together with the human by using equipped wheels.

Firstly, a multimodal recognition system utilizing the camera, microphone array, etc. was developed. Next, in order to set a technological foundation to facilitate the interaction of the robot with the human, a conversation control system was developed that can control the speech, motion, gaze, and emotion of the robot based on its intention and desire towards making the human feel more human-like existence of the robot during the interaction. Although the experiment for the verification of the system was conducted for a short period of time, including having conversation with a visitor in a waiting room; it has proved that the android "ERICA" is able to conduct natural conversation and increase the perceived existence of the robot by the human, which are less likely to be achieved by using the other well-known robots.

Furthermore, by using some novel technologies such as the implementation of natural and various types of nodding during the interaction, asking in return with analyzing the linguistical focus terms of the interaction sentence, and the implementation of the reaction detection mechanism, a conversation system was developed for the robot which has resulted in more human-like sense of conversing. Adopting this system in an experiment in which human participants were asked to have a conversation with the robot, and the human participants were interviewed by an interviewer during and after the experiment, a successful induction of the human was approved in speaking with the robot and continuing a human-like conversation for a long period of time; compared to the well-known smart speaker-based systems.

Also, a group of conversational social robots named "CommU"s was adopted to develop a multi-robot conversation control system. This system controls the timing of multiple CommU's conversational behaviors such as the starting of the speech, nodding, and the nonverbal communication behaviors. This was set to perform between-robot turn-taking interactions such as passing the conversation, playing a specific role during the conversation, and even switching the roles of each other. It was found that by showing such between-robot conversations to the interacting human, the human feels that the conversation is actually occurring through an independence of the accuracy of the voice recognition (a technology for conversation without voice recognition). Furthermore, adopting conversations including ambiguous and vague sentences, which are applicable to more than one meaning/intention, by two or more robots have leaded the human to feel no contradiction in the conversation independence of human's speech intention (a technology for conversation without intention detection). By using these techniques, the sense of conversing could be expressed and the perception of the human regarding the conversation could be improved. In other words, it was found that a coordination of two or more robots can establish a social situation and can advance the imagination of the human to interpret the observations with a positive direction, which consequently decreases the discomforts of the conversation.

Finally, to develop the required conversation system technologies for a robot which attempts to "coexist" with the human, and also to investigate a platform for a conversational robot performing in the daily life of the human, "ibuki," a child-like android with a moving unit was developed in this project. It has been developed not only for the purpose of enabling the movement of an android robot but to promote the technologies in the interactions inducing the affinity with the human by walking together. It is expected to achieve an autonomous conversational android, which is able to have activity in human's daily life.

The knowledge acquired from these researches and the development of "ibuki" is expected to be applied on the development of further areas regarding similar social conversational robots, such as for an aim of providing information, life support, and the human learning support.
ref-https://www.sciencedaily.com/releases/2018/08/180801102624.htm

13
Artificial intelligence is now so smart that silicon brains frequently outthink people.

Computers operate self-driving cars, pick friends' faces out of photos on Facebook, and are learning to take on jobs typically entrusted only to human experts.

Researchers from the University of Wisconsin-Madison and Oak Ridge National Laboratory have trained computers to quickly and consistently detect and analyze microscopic radiation damage to materials under consideration for nuclear reactors. And the computers bested humans in this arduous task.

"Machine learning has great potential to transform the current, human-involved approach of image analysis in microscopy," says Wei Li, who earned his master's degree in materials science and engineering this year from UW-Madison.

Many problems in materials science are image-based, yet few researchers have expertise in machine vision -- making image recognition and analysis a major research bottleneck. As a student, Li realized that he could leverage training in the latest computational techniques to help bridge the gap between artificial intelligence and materials science research.

Li, with Oak Ridge staff scientist Kevin Field and UW-Madison materials science and engineering professor Dane Morgan, used machine learning to make artificial intelligence better than experienced humans at analyzing damage to potential nuclear reactor materials. The collaborators described their approach in a paper published July 18 in the journal npj Computational Materials.

Machine learning uses statistical methods to guide computers toward improving their performance on a task without receiving any explicit guidance from a human. Essentially, machine learning teaches computers to teach themselves.

"In the future, I believe images from many instruments will pass through a machine learning algorithm for initial analysis before being considered by humans," says Morgan, who was Li's graduate school advisor.

The researchers targeted machine learning as a means to rapidly sift through electron microscopy images of materials that had been exposed to radiation, and identify a specific type of damage -- a challenging task because the photographs can resemble a cratered lunar surface or a splatter-painted canvas.

That job, absolutely critical to developing safe nuclear materials, could make a time-consuming process much more efficient and effective.

"Human detection and identification is error-prone, inconsistent and inefficient. Perhaps most importantly, it's not scalable," says Morgan. "Newer imaging technologies are outstripping human capabilities to analyze the data we can produce."

Previously, image-processing algorithms depended on human programmers to provide explicit descriptions of an object's identifying features. Teaching a computer to recognize something simple like a stop sign might involve lines of code describing a red octagonal object.

More complex, however, is articulating all of the visual cues that signal something is, for example, a cat. Fuzzy ears? Sharp teeth? Whiskers? A variety of critters have those same characteristics.

Machine learning now takes a completely different approach.

"It's a real change of thinking. You don't make rules. You let the computer figure out what the rules should be," says Morgan.

Today's machine learning approaches to image analysis often use programs called neural networks that seem to mimic the remarkable layered pattern-recognition powers of the human brain. To teach a neural network to recognize a cat, scientists simply "train" the program by providing a collection of accurately labeled pictures of various cat breeds. The neural network takes over from there, building and refining its own set of guidelines for the most important features.

Similarly, Morgan and colleagues taught a neural network to recognize a very specific type of radiation damage, called dislocation loops, which are some of the most common, yet challenging, defects to identify and quantify even for a human with decades of experience.

After training with 270 images, the neural network, combined with another machine learning algorithm called a cascade object detector, correctly identified and classified roughly 86 percent of the dislocation loops in a set of test pictures. For comparison, human experts found 80 percent of the defects.

"When we got the final result, everyone was surprised," says Field, "not only by the accuracy of the approach, but the speed. We can now detect these loops like humans while doing it in a fraction of the time on a standard home computer."

After he graduated, Li took a job with Google, but the research is ongoing. Morgan and Field are working to expand their training data set and teach a new neural network to recognize different kinds of radiation defects. Eventually, they envision creating a massive cloud-based resource for materials scientists around the world to upload images for near-instantaneous analysis.

"This is just the beginning," says Morgan. "Machine learning tools will help create a cyber infrastructure that scientists can utilize in ways we are just beginning to understand."
ref-https://www.sciencedaily.com/releases/2018/07/180720125148.htm

14
With companies like Google, Microsoft, and IBM all racing to create the world's first practical quantum computer, scientists worldwide are exploring the potential materials that could be used to build them.

Now, Associate Professor Yang Hyunsoo and his team from the Department of Electrical and Computer Engineering at the National University of Singapore (NUS) Faculty of Engineering have demonstrated a new method which could be used to bring quantum computing closer to reality.

"The NUS team, together with our collaborators from Rutgers, The State University of New Jersey in the United States and RMIT University in Australia, showed a practical way to observe and examine the quantum effects of electrons in topological insulators and heavy metals which could later pave the way for the development of advanced quantum computing components and devices," explained Assoc Prof Yang.

The findings of the study were published in the scientific journal Nature Communications in June 2018.

The advantage of quantum computers

Quantum computers are still in the early stages of development but are already displaying computing speeds millions of times faster than traditional technologies. As such, it is predicted that when quantum computing becomes more readily available, it will be able to answer some of the world's toughest questions in everything from finance to physics. This remarkable processing power is made possible by the radical way that quantum computers operate -- using light rather than electricity.

Classical computers push electrons through devices which code information into binary states of ones and zeros. In contrast, quantum computers use laser light to interact with electrons in materials to measure the phenomenon of electron "spin." These spinning electron states replace the ones and zeros used as the basis for traditional computers, and because they can exist in many spin states simultaneously, this allows for much more complex computing to be performed.

However, harnessing information based on the interactions of light and electrons is easier said than done. These interactions are incredibly complex and like anything in the quantum world there is a degree of uncertainty when trying to predict behaviour. As such, a reliable and practical way to observe these quantum effects has been sought-after in recent research to help in the discovery of more advanced quantum computing devices.

Visualising quantum spin effects

The real breakthrough from the scientists at NUS was the ability to "see" for the first time particular spin phenomena in topological insulators and metals using a scanning photovoltage microscope.

Topological insulators are electronic materials that are insulating in their interior but support conducting states on their surface, thus enabling electrons to flow along the surface of the material.

Assoc Prof Yang and his team examined platinum metal as well as topological insulators Bi2Se3 and BiSbTeSe2. An applied electrical current influenced the electron spin at the quantum level for all of these materials and the scientists were able to directly visualise this change using polarised light from the microscope.

Additionally, unlike other observational techniques, the innovative experimental setup meant that the results could be gathered at room temperature, making this a practical method of visualisation which is applicable to many other materials.

Mr Liu Yang, who is a PhD student with the Department and first author of the study, said, "Our method can be used as a powerful and universal tool to detect the spin accumulations in various materials systems. This means that developing better devices for quantum computers will become easier now that these phenomena can be directly observed in this way."
ref-https://www.sciencedaily.com/releases/2018/07/180716103551.htm

15
Rutgers University-New Brunswick engineers have created a 3D-printed smart gel that walks underwater and grabs objects and moves them.

The watery creation could lead to soft robots that mimic sea animals like the octopus, which can walk underwater and bump into things without damaging them. It may also lead to artificial heart, stomach and other muscles, along with devices for diagnosing diseases, detecting and delivering drugs and performing underwater inspections.

Soft materials like the smart gel are flexible, often cheaper to manufacture than hard materials and can be miniaturized. Devices made of soft materials typically are simple to design and control compared with mechanically more complex hard devices.

"Our 3D-printed smart gel has great potential in biomedical engineering because it resembles tissues in the human body that also contain lots of water and are very soft," said Howon Lee, senior author of a new study and an assistant professor in the Department of Mechanical and Aerospace Engineering. "It can be used for many different types of underwater devices that mimic aquatic life like the octopus."

The study, published online today in ACS Applied Materials & Interfaces, focuses on a 3D-printed hydrogel that moves and changes shape when activated by electricity. Hydrogels, which stay solid despite their 70-plus percent water content, are found in the human body, diapers, contact lenses, Jell-O and many other things.

During the 3D-printing process, light is projected on a light-sensitive solution that becomes a gel. The hydrogel is placed in a salty water solution (or electrolyte) and two thin wires apply electricity to trigger motion: walking forward, reversing course and grabbing and moving objects, said Lee. The human-like walker that the team created is about one inch tall.

The speed of the smart gel's movement is controlled by changing its dimensions (thin is faster than thick), and the gel bends or changes shape depending on the strength of the salty water solution and electric field. The gel resembles muscles that contract because it's made of soft material, has more than 70 percent water and responds to electrical stimulation, Lee said.

"This study demonstrates how our 3D-printing technique can expand the design, size and versatility of this smart gel," he said. "Our microscale 3D-printing technique allowed us to create unprecedented motions."
ref-https://www.sciencedaily.com/releases/2018/05/180518081910.htm

Pages: [1] 2 3 4