Show Posts

This section allows you to view all posts made by this member. Note that you can only see posts made in areas you currently have access to.


Topics - shalauddin.ns

Pages: [1] 2 3 ... 14
1
Google is making it easier to continue your old searches by adding activity cards

When you do a repeat search on mobile, the new feature will show links to pages you've visited previously and searches you've already made.

Google
The links show up under the "Your related activity" dropdown menu at the top of your results page, letting you either pick up an old search thread or avoid going over the same ground.

"If you're logged into your Google account and search for topics and hobbies like cooking, interior design, fashion, skincare and beauty, fitness, photography and more, you may find an activity card at the top of the results page that provides easy ways to continue your exploration," Andrew Moore, Google's product manager for search, said Thursday in a blog post.

You can mark a page to check out later by touching the activity card link to add it to a collection, which can be accessed by tapping the menu on the top left of the mobile web search page or on the bottom bar of the Google app.

A link can be deleted or activity cards can be turned off completely by tapping the three-dot icon at the top right.

2
কম্পিউটারে একসঙ্গে অনেক ফাইল বা ফোল্ডার নিয়ে কাজ করতে গিয়ে অনেক সময় কাঙ্ক্ষিত ফাইল খোঁজা কঠিন হয়ে যায়। সহজেই ফাইল বা ফোল্ডার খুঁজতে উইন্ডোজ এক্সপ্লোরারে আছে ফিল্টারিং বা গ্রুপ করে খোঁজার সুবিধা। নিচের পদ্ধতিগুলো প্রয়োগ করলে অনেক ফাইল থেকে আপনার কাঙ্ক্ষিত ফাইলকে সহজেই খুঁজে নিতে পারবেন।
সর্ট বাই এবং গ্রুপ বাই সুবিধা ব্যবহার করে
উইন্ডোজ এক্সপ্লোরারের Sort by অপশন ব্যবহার করে দরকারি ডকুমেন্ট, অ্যাপ্লিকেশন, টেক্সট বা ছবিকে Size, Name, Type, Date modified আকারে খুঁজে নেওয়া যাবে। যেকোনো ফোল্ডারে গিয়ে ফাঁকা জায়গায় মাউসের রাইট বোতাম চেপে Sort by-এর তালিকার Name নির্বাচন করলে নামের ক্রম অনুসারে ফাইল আগে দেখাবে। Type নির্বাচন করলে ধরন অনুযায়ী আলাদা অংশে ফাইল দেখাবে। Size নির্বাচন করলে বড় বা ছোট আকারের ক্রম অনুযায়ী দেখাবে। সর্বশেষ কোন ফাইলটি রেখেছেন সেটি আগে দেখতে চাইলে তালিকা থেকে Date modified নির্বাচন করতে হবে। অনেক সময় এটি তালিকায় থাকে না। এটি আনতে Sort by-এর তালিকার More-এ ক্লিক করুন। Choose Details উইন্ডো চালু হলে এখানে থেকে Date modified-এর ঘরে টিক চিহ্ন দিন। এভাবে এখানে থাকা প্রয়োজনীয় অপশনগুলোর পাশে টিক চিহ্ন দিয়ে ওকে চাপলে সেটি Sort by-এর তালিকায় যুক্ত হয়ে যাবে। প্রয়োজন অনুযায়ী সেই অপশন নির্বাচন করলে সেভাবে ফাইল বা ফোল্ডার দেখাবে। এভাবে সর্ট বাই তালিকার Ascending-এ ক্লিক করলে A থেকে Z আকারে দেখাবে। আর descending এ ক্লিক করলে Z থেকে A, অর্থাৎ উল্টোটা দেখাবে। আবার ফাঁকা জায়গায় মাউসের ডান বোতাম চেপে Group by-এ ক্লিক করলে সর্ট বাই-এর কাজগুলোয় প্রতিটি আলাদা আলাদা গ্রুপ আকারে দেখাবে।

সার্চ ব্যবহার করে

এক্সপ্লোরারের ওপরে ডান পাশের কোনার সার্চ বার ব্যবহার করে অথবা কি-বোর্ডের Ctrl + F চেপে সহজেই দরকারি ফাইল খুঁজে নেওয়া যায়। সার্চের ঘরে গিয়ে ‘type:application’ লিখলে অ্যাপ্লিকেশন ফাইলগুলো খুঁজবে। এভাবে ইমেজ ফাইল খুঁজতে ‘type:image’ লিখুন। এতে সব ছবির ফাইল দেখাবে। যে টাইপ ফাইল দরকার ‘type:’ লিখে এরপর ফাইল টাইপ লিখলে সেটি খুঁজে নিয়ে দেখাবে। একইভাবে ‘type:pdf’ লিখলে পিডিএফ ফাইল আর ‘type:word’ লিখলে ওয়ার্ড ফাইল দেখাবে। ‘size:’ লিখে তারপর পছন্দমতো আকার উল্লেখ করলে সেটিও দেখাবে।

 

3
রোবট এবং কৃত্রিম বুদ্ধিমত্তা প্রযুক্তির যন্ত্র তৈরি ও ব্যবহারের জন্য নতুন আইন প্রণয়নের সুপারিশ করেছে ইউরোপীয় সংসদ। এতে ইলেকট্রনিক ব্যক্তিসত্তার বিষয়টিকে গুরুত্ব দেওয়া হচ্ছে, যাতে কৃত্রিম বুদ্ধিমত্তা বা এআই প্রযুক্তিতে তৈরি যন্ত্রগুলোর অধিকার ও দায়িত্ব নির্ধারণ করা যায়। এরই মধ্যে আইনটির খসড়া কমিটির গত অধিবেশনে ১৭-২ ভোটে পাস হয়েছে।
লুক্সেমবার্গের ইউরোপীয় সংসদের সদস্য ম্যাডি ডেলভক্স বলেন, ‘আমাদের দৈনন্দিন জীবনের অনেক বিষয় বর্তমানে রোবটিকস দ্বারা প্রভাবিত হচ্ছে এবং এর সংখ্যা দিন দিন বাড়ছে। এই বাস্তবতাকে স্বীকার করা এবং রোবট যে মানুষের সেবায় ভবিষ্যতেও থাকবে, তা নিশ্চিত করার জন্য একটি শক্তিশালী আইনি কাঠামো তৈরি করাটা জরুরি হয়ে পড়েছিল।’
রোবটের জন্য প্রস্তাবিত এই আইনে রোবটকে করপোরেট ব্যক্তিসত্তা হিসেবে সংজ্ঞায়িত করা হয়েছে, যেখানে তাদের নিবন্ধনের একটি পদ্ধতিও থাকবে। রোবটের নৈতিক নকশা প্রণয়ন, উৎপাদন এবং ব্যবহারের পথনির্দেশক হিসেবে রোবটিকস প্রকৌশলীদের জন্য একটি নীতিমালা থাকবে। প্রতিষ্ঠানের অর্থনৈতিক উন্নতিতে রোবটিকস এবং এআইয়ের অবদান উল্লেখ করে একটি প্রতিবেদন পেশ করতে হবে, যেন তাদের ওপর করারোপ করা যায় এবং তাদের সামাজিক নিরাপত্তায় অবদান রাখা যায়।

রোবট দ্বারা সৃষ্ট ক্ষতিপূরণের জন্য একটি নতুন বাধ্যতামূলক বিমা স্কিম চালু করতে হবে বলেও উল্লেখ করা হয় প্রতিবেদনে।

তবে অসবর্ন ক্লার্কের আইনজীবী অ্যাশলে মর্গান বলছেন, এই প্রস্তাবিত আইন অত্যন্ত বিতর্কিত। তিনি বলেন, ‘তখন এটা নিয়ে তর্ক হতে পারে যে প্রস্তাবিত আইনের মাধ্যমে রোবটকে মানবাধিকার দেওয়া হচ্ছে।’

যা হোক, ফেব্রুয়ারিতে ইউরোপীয় সংসদের সব সদস্য খসড়া প্রস্তাবের ওপর ভোট দেবে, যা কিনা   আইনে রূপ নিতে গেলে নিরঙ্কুশ সংখ্যাগরিষ্ঠ অনুমোদন দরকার হবে।

 সূত্র: দ্য গার্ডিয়ান

4
ছবি সম্পাদনা করতে হাত লাগাবেন কেন? মুখে মুখে ফটোশপকে নির্দেশনা দিন, কাজ হয়ে যাবে। অ্যাডোব সম্প্রতি প্রটোটাইপ ভার্চ্যুয়াল অ্যাসিসট্যান্ট বা সহকারী তৈরি করছে, যা ভয়েস কমান্ডের মাধ্যমে ছবি সম্পাদনা করতে সক্ষম।

গত বছরের নভেম্বরে অ্যাডোব ম্যাক্স ২০১৬ সম্মেলনে অ্যাডোব সেনসেই ঘোষণার মাধ্যমে কৃত্রিম বুদ্ধিমত্তাসম্পন্ন অ্যাপ্লিকেশন তৈরির কথা জানিয়েছিল অ্যাডোব কর্তৃপক্ষ।

সম্প্রতি অ্যাডোব তাদের নতুন উদ্যোগের কথা জানিয়ে একটি ভিডিও পোস্ট করেছে। ওই ভিডিওতে অ্যাডোবের তৈরি অ্যাপ্লিকেশনে কণ্ঠস্বরচালিত ভার্চ্যুয়াল সহকারী কীভাবে কাজ করবে তা দেখানো হয়েছে। ছবি ও ভিডিও সম্পাদনার পাশাপাশি কথা বলে ওই ছবি সামাজিক যোগাযোগের মাধ্যমে শেয়ার করার বিষয়টিও ভিডিওতে দেখানো হয়েছে।

অ্যাডোব কর্তৃপক্ষ জানিয়েছে, কণ্ঠস্বরভিত্তিক ইন্টারফেস ব্যবহার করে ছবি সম্পাদনার প্রথম পদক্ষেপ এটি। অ্যাডোব মোবাইল অ্যাপ ব্যবহার করে সহজে ছবি খোঁজা ও সম্পাদনার জন্য এটি তৈরি করা হয়েছে। কবে নাগাদ এটি উন্মুক্ত করা হবে তা এখনো জানায়নি প্রতিষ্ঠানটি। তথ্যসূত্র: এনডিটিভি।

5


কম্পিউটারের ক্ষমতা বৃদ্ধির সঙ্গে উন্নত হচ্ছে মেশিন লার্নিং, নিউরাল নেটওয়ার্ক, কম্পিউটারের সৃজনশীলতার মতো প্রযুক্তি। একই সঙ্গে বাড়ছে কৃত্রিম বুদ্ধিমত্তা প্রযুক্তির কাজের ধরন কিংবা এর কর্মক্ষমতা। নির্ধারিত পরিবেশে কাজ করার ক্ষমতা থেকে শুরু করে পরিবেশ বুঝে কাজের ধরন বদলাতে পারে এমন সচেতন কৃত্রিম বুদ্ধিমত্তা প্রযুক্তির রোবট তৈরি হচ্ছে। এখানে বর্তমানের কৃত্রিম বুদ্ধিমত্তা এবং ভবিষ্যতে এই প্রযুক্তি কোথায় পৌঁছাবে, সে সম্পর্কে একটা ধারণা দেওয়ার চেষ্টা করা হলো।

ধরন ১

প্রতিক্রিয়াশীল

প্রাথমিক পর্যায়ের কৃত্রিম বুদ্ধিমত্তা প্রযুক্তি এটি। পরিবেশ বোঝার চেষ্টা করে এবং কোনো কিছু দেখে সে অনুযায়ী কাজ করার চেষ্টা করে এটি। এর বাইরে কোনো কিছুর ধারণা এ ধরনের কৃত্রিম বুদ্ধিমত্তা প্রযুক্তির থাকে না। এটি পারিপার্শ্বিক পরিস্থিতি থেকে স্মৃতি তৈরি কিংবা আগের ঘটনার অভিজ্ঞতা কাজে লাগিয়ে বর্তমান কোনো কাজের সিদ্ধান্ত গ্রহণ করতে পারে না।

উদাহরণ

* আইবিএমের ডিপ ব্লু

* গুগলের আলফাগো প্রোগ্রাম

ধরন ২

সংক্ষিপ্ত স্মৃতি

দ্বিতীয় পর্যায়ের কৃত্রিম বুদ্ধিমত্তা প্রযুক্তি এটি। এ ধরনের প্রযুক্তিতেও আগে থেকে ঠিক করে দেওয়া সিদ্ধান্ত নেয় যন্ত্র। তবে আগের ধরনের সঙ্গে পার্থক্য হলো আগের ঘটনার স্মৃতি কাজে লাগাতে পারে। এতে ঠিক এতটুকু স্মৃতি কিংবা অভিজ্ঞতা যোগ করা হয় যাতে অবস্থা অনুযায়ী সঠিক সিদ্ধান্ত গ্রহণ করতে পারে।

উদাহরণ

* চালকবিহীন স্বয়ংক্রিয় গাড়ি

* চ্যাট বট, ব্যক্তিগত ডিজিটাল সহকারী

ধরন ৩

মনসূত্র

তৃতীয় পর্যায়ের এই কৃত্রিম বুদ্ধিমত্তা প্রযুক্তি মানুষের কাজের ধরনে প্রভাব ফেলে এমন চিন্তা এবং অনুভূতি বোঝার চেষ্টা করে। এ ধরনের প্রযুক্তির উন্নয়ন চলছে, তবে এখনো হাতের নাগালে পৌঁছায়নি। মানুষের ইচ্ছা, আশা, স্পৃহা ও অনুভূতির ধরন বুঝে সামাজিকতা রক্ষা করতে পারবে এই প্রযুক্তি।

উদাহরণ

* স্টার ওয়ারস সিরিজের চলচ্চিত্রের ‘সি-৩পিও’এবং ‘আর২-ডি২’ চরিত্র

* ২০০৪ সালের মুক্তি পাওয়া আই, রোবট চলচ্চিত্রের ‘সনি’ চরিত্র

ধরন ৪

সচেতন

এ ধরনের কৃত্রিম বুদ্ধিমত্তা প্রযুক্তি নিজের অবস্থা বুঝতে পারে। আগের ধরনের চেয়ে কিছুটা উন্নত এই প্রযুক্তি। নিজের ‘অনুভূতি’ সম্পর্কে যেমন সচেতন, তেমনই অন্যের অনুভূতি অনুমান করতে পারে। সিদ্ধান্ত গ্রহণের ক্ষমতা এ ধরনের বুদ্ধিমান যন্ত্রে থাকবে। সচেতন, সংবেদনশীল এই কৃত্রিম বুদ্ধিমত্তা প্রযুক্তি পাওয়া যাবে ভবিষ্যৎ প্রজন্মের যন্ত্রে।

উদাহরণ

* ২০১৫ সালে মুক্তি পাওয়া ছবি এক্স মেশিনা-এর ‘ইভা’

* ২০১৫ সালের টিভি সিরিজ হিউম্যানস-এর ‘সিন্থস’

সূত্র: ফিউচারিজম

6
অনেক সময় স্বাভাবিকভাবে পেনড্রাইভ বা মেমোরি কার্ড ফরম্যাট হতে চায় না। ভাইরাস বা অন্য কোনো কারণে এমনটা হতে পারে। এ ক্ষেত্রে অনেকে বিভিন্ন ধরনের সফটওয়্যার দিয়ে ফরম্যাট করার চেষ্টা করেন। তবে কোনো সফটওয়্যার ছাড়াই পেনড্রাইভ বা মেমোরি কার্ড ফরম্যাট করা সম্ভব। এ জন্য উইন্ডোজ অপারেটিং সিস্টেমের কমান্ড প্রম্পট ব্যবহার করা যায়।
*  প্রথমে পেনড্রাইভ বা মেমোরি কার্ডটি কম্পিউটারে যুক্ত করুন। এরপর কমান্ড প্রম্পট চালু করতে স্টার্ট মেনুতে cmd লিখে এন্টার করুন।
*  কমান্ড প্রম্পট চালু হলে diskpart লিখে এন্টার করতে হবে।
*  এরপর টাইপ করুন list disk কমান্ড।
*  আপনার ইউএসবি ডিস্কের নম্বর দিতে হবে। ডিস্ক নম্বর দিয়ে এন্টার দিতে হবে। যেমন Select Disk 1, যদি আপনার কাঙ্ক্ষিত ডিস্ক নম্বর 1 হয়।
*  এরপর clean লিখে এন্টার করুন।
*  create partition primary লিখে এন্টার দিতে হবে।

ব্যাস, হয়ে গেল। এখন My computer-এ ঢুকে পেনড্রাইভের যে ড্রাইভ লেটারটি দেখাবে তা ফরম্যাট করলে পেনড্রাইভের পুরো জায়গা দেখাবে।

7
দিন কয়েক আগেই পেপ্যাল সহপ্রতিষ্ঠাতা পিটার থিয়েল বলেছেন অ্যাপলের যুগ নাকি শেষ। কারণ স্মার্টফোনে আর নতুন উদ্ভাবনের সুযোগ নেই। তবে অ্যান্ড্রয়েডের উদ্ভাবক অ্যান্ডি রুবিন বলছেন ভিন্ন কথা। বিশ্ববাসীকে তিনি দেখাতে চান ভবিষ্যতের স্মার্টফোনে কেমন হবে। আর এ জন্য ‘এসেনশিয়াল’ নামের নতুন এক ব্যবসায় উদ্যোগ প্রতিষ্ঠা করে বসেছেন তিনি। অ্যান্ড্রয়েড ও ড্যাঞ্জারের মতো উদ্যোগ যিনি নিয়েছেন, তাঁর কথা কেউ উড়িয়েও দিতে পারছে না।
যতটুকু জানা গেছে তাতে উচ্চপ্রযুক্তির স্মার্টফোন তৈরিতে কাজ করছে এসেনশিয়াল, এর পাশাপাশি আছে স্মার্ট বাড়ি প্রযুক্তির যন্ত্র। এবারের কনজ্যুমার ইলেকট্রনিকস শোতে মোবাইল নেটওয়ার্ক সেবাদাতা প্রতিষ্ঠানগুলোর সঙ্গে এরই মধ্যে এই স্মার্টফোন নিয়ে কথা বলেছে এসেনশিয়াল।
সংবাদমাধ্যম ব্লুমবার্গের এক প্রতিবেদনে বলা হয়েছে এসেনশিয়ালে বর্তমানে প্রায় ৪০ জন কর্মী। এই কর্মীদের প্রায় সবাই আগে অ্যাপল ও গুগলে কাজ করতেন।
২০০৫ সালে গুগলের কাছে অ্যান্ড্রয়েড অপারেটিং সিস্টেম বিক্রি করে দেন অ্যান্ডি রুবিন। পরের আট বছর গুগলে অ্যান্ড্রয়েড দলের নেতৃত্ব দেন তিনি। এখন প্লেগ্রাউন্ড গ্লোবাল নামে নতুন উদ্যোক্তাদের সহযোগিতার জন্য প্রতিষ্ঠান বা স্টার্টআপ ইনকিউবেটর পরিচালনা করেন। বিশেষ করে কৃত্রিম বুদ্ধিমত্তা, রোবোটিকস ও অগমেন্টেড রিয়্যালিটি প্রকল্পগুলোকে সাহায্য করে তাঁর এই প্রতিষ্ঠান।
সূত্র: রিকোড, ব্লুমবার্গ

8
Science and Information / Oldest known planet-forming disk discovered
« on: January 15, 2017, 08:34:35 PM »
A group of citizen scientists and professional astronomers, including Carnegie's Jonathan Gagné, joined forces to discover an unusual hunting ground for exoplanets. They found a star surrounded by the oldest known circumstellar disk -- a primordial ring of gas and dust that orbits around a young star and from which planets can form as the material collides and aggregates.

Led by Steven Silverberg of University of Oklahoma, the team described a newly identified red dwarf star with a warm circumstellar disk, of the kind associated with young planetary systems. Circumstellar disks around red dwarfs like this one are rare to begin with, but this star, called AWI0005x3s, appears to have sustained its disk for an exceptionally long time. The findings are published by The Astrophysical Journal Letters.

"Most disks of this kind fade away in less than 30 million years," said Silverberg. "This particular red dwarf is a candidate member of the Carina stellar association, which would make it around 45 million years old [like the rest of the stars in that group]. It's the oldest red dwarf system with a disk we've seen in one of these associations."

The discovery relied on citizen scientists from Disk Detective, a project led by NASA/GSFC's Dr. Marc Kuchner that's designed to find new circumstellar disks. At the project's website, DiskDetective.org, users make classifications by viewing ten-second videos of data from NASA surveys, including the Wide-field Infrared Survey Explorer mission (WISE) and Two-Micron All Sky Survey (2MASS) projects. Since the launch of the website in January 2014, roughly 30,000 citizen scientists have participated in this process, performing roughly 2 million classifications of celestial objects.

"Without the help of the citizen scientists examining these objects and finding the good ones, we might never have spotted this object," Kuchner said. "The WISE mission alone found 747 million [warm infrared] objects, of which we expect a few thousand to be circumstellar disks."

"Unraveling the mysteries of our universe, while contributing to the advancement of astronomy, is without a doubt a dream come true," says Hugo Durantini Luca from Argentina, one of eight citizen scientist co-authors.

Determining the age of a star can be tricky or impossible. But the Carina association, where this red dwarf was found, is a group of stars whose motions through the Galaxy indicate that they were all born at roughly the same time in the same stellar nursery.

Carnegie's Gagné devised a test that showed this newly found red dwarf and its disk are likely part of the Carina association, which was key to revealing its surprising age.

"It is surprising to see a circumstellar disk around a star that may be 45 million years old, because we normally expect these disks to dissipate within a few million years," Gagné explained. "More observations will be needed to determine whether the star is really as old as we suspect, and if it turns out to be, it will certainly become a benchmark system to understand the lifetime of disks."

Knowing that this star and its disk are so old may help scientists understand why M dwarf disks appear to be so rare.

This star and its disk are interesting for another reason: the possibility that it could host extrasolar planets. Most of the extrasolar planets that have been found by telescopes have been located in disks similar to the one around this unusual red dwarf. Moreover, this particular star is the same spectral type as Proxima Centauri, the Sun's nearest neighbor, which was shown to host at least one exoplanet, the famous Proxima b, in research published earlier this year.

9
The world's attention is now on Proxima Centauri b, a possibly Earth-like planet orbiting the closest star, 4.22 light-years away. The planet's orbit is just right to allow liquid water on its surface, needed for life. But could it in fact be habitable?

If life is possible there, the planet evolved very different than Earth, say researchers at the University of Washington-based Virtual Planetary Laboratory (VPL) where astronomers, geophysicists, climatologists, evolutionary biologists and others team to study how distant planets might host life.

Astronomers at Queen Mary University in London have announced discovery of Proxima Centauri b, a planet orbiting close to a star 4.22 light-years away. The find has been called "the biggest exoplanet discovery since the discovery of exoplanets."

Rory Barnes, UW research assistant professor of astronomy, published a discussion about the discovery at palereddot.org, a website dedicated to the search for life around Proxima Centauri. His essay describes research underway through the UW planetary lab -- part of the NASA Astrobiology Institute -- to answer the question, is life possible on this world?

"The short answer is, it's complicated," Barnes writes. "Our observations are few, and what we do know allows for a dizzying array of possibilities" -- and almost as many questions.

The Virtual Planetary Laboratory is directed by Victoria Meadows, UW professor of astronomy. UW-affiliated researchers include Giada Arney, Edward Schwieterman and Rodrigo Luger. Using computer models, the researchers studied clues from the orbits of the planet, its system, its host star and apparent companion stars Alpha Centauri A and B -- plus what is known of stellar evolution to begin evaluating Proxima b's chances.

Relatively little is known about Proxima:

• It's at least as massive as Earth and may be several times more massive, and its "year" -- the time it takes to orbit its star -- is only 11 days

• Its star is only 12 percent as massive as our sun and much dimmer (so its habitable zone, allowing liquid water on the surface, is much closer in) and the planet is 25 times closer in than Earth is to our sun

• The star may form a third part of the Alpha Centauri binary star system, separated by a distance of 15,000 "astronomical units," which could affect the planet's orbit and history

• The new data hint at the existence of a second planet in the system with an orbital period near 200 days, but this has not been proven

Perhaps the biggest obstacle to life on the planet, Barnes writes, is the brightness of its host star. Proxima Centauri, a red dwarf star, is comparatively dim, but wasn't always so.

"Proxima's brightness evolution has been slow and complicated," Barnes writes. "Stellar evolution models all predict that for the first one billion years Proxima slowly dimmed to its current brightness, which implies that for about the first quarter of a billion years, planet b's surface would have been too hot for Earth-like conditions."

Barnes notes that he and UW graduate student Rodrigo Luger recently showed that had modern Earth been in such a situation, "it would have become a Venus-like world, in a runaway greenhouse state that can destroy all of the planet's primordial water," thus extinguishing any chance for life.

Next come a host of questions about the planet's makeup, location and history, and the team's work toward discerning answers.

• Is the planet "rocky" like Earth? Most orbits simulated by the planetary lab suggest it could be -- and thus can host water in liquid form, a prerequisite for life

• Where did it form, and was there water? Whether it formed in place or farther from its star, where ice is more likely, VPL researchers believe it is "entirely possible" Proxima b could be water-rich, though they are not certain.

• Did it start out as a hydrogen-enveloped Neptune-like planet and then lose its hydrogen to become Earth-like? VPL research shows this is indeed possible, and could be a viable pathway to habitability

• Proxima Centauri flares more often than our sun; might such flares have long-since burned away atmospheric ozone that might protect the surface and any life? This is possible, though a strong magnetic field, as Earth has, could protect the surface.

Also, any life under even a few meters of liquid water would be protected from radiation.

Another concern is that the planet might be tidally locked, meaning one side permanently faces its star, as the moon does Earth. Astronomers long thought this to mean a world could not support life, but now believe planetwide atmospheric winds would transport heat around the planet.

"These questions are central to unlocking Proxima's potential habitability and determining if our nearest galactic neighbor is an inhospitable wasteland, an inhabited planet, or a future home for humanity," Barnes writes.

Planetary laboratory researchers also are developing techniques to determine whether Proxima b's atmosphere is amenable to life.

"Nearly all the components of an atmosphere imprint their presence in a spectrum (of light)," Barnes writes. "So with our knowledge of the possible histories of this planet, we can begin to develop instruments and plan observations that pinpoint the critical differences."

At high enough pressures, he notes, oxygen molecules can momentarily bind to each other to produce an observable feature in the light spectrum.

"Crucially, the pressures required to be detectable are large enough to discriminate between a planet with too much oxygen, and one with just the right amount for life.

As we learn more about the planet and the system, we can build a library of possible spectra from which to quantitatively determine how likely it is that life exists on planet b."

Our own sun is expected to burn out in about 4 billion years, but Proxima Centauri has a much better forecast, perhaps burning for 4 trillion years longer.

"If Proxima b is habitable, then it might be an ideal place to move. Perhaps we have just discovered a future home for humanity. But in order to know for sure, we must make more observations, run many more computer simulations and, hopefully, send probes to perform the first direct reconnaissance of an exoplanet," Barnes writes. "The challenges are huge, but Proxima b offers a bounty of possibilities that fills me with wonder."

Proxima Centauri b may be the first exoplanet to be directly characterized by powerful ground- and space-based telescopes planned for the future, and its atmosphere spectroscopically probed for active biology. The research was funded by the NASA Astrobiology Institute. "Whether habitable or not," Barnes concludes, "Proxima Centauri b offers a new glimpse into how the planets and life fit into our universe."

10
Science and Information / Planet Nine could spell doom for solar system
« on: January 15, 2017, 08:33:55 PM »
The solar system could be thrown into disaster when the sun dies if the mysterious ‘Planet Nine’ exists, according to research from the University of Warwick.

Dr Dimitri Veras in the Department of Physics has discovered that the presence of Planet Nine – the hypothetical planet which may exist in the outer Solar System - could cause the elimination of at least one of the giant planets after the sun dies, hurling them out into interstellar space through a sort of ‘pinball’ effect.

When the sun starts to die in around seven billion years, it will blow away half of its own mass and inflate itself — swallowing the Earth — before fading into an ember known as a white dwarf.  This mass ejection will push Jupiter, Saturn, Uranus and Neptune out to what was assumed a safe distance.

However, Dr. Veras has discovered that the existence of Planet Nine could rewrite this happy ending. He found that Planet Nine might not be pushed out in the same way, and in fact might instead be thrust inward into a death dance with the solar system’s four known giant planets — most notably Uranus and Neptune. The most likely result is ejection from the solar system, forever.

Using a unique code that can simulate the death of planetary systems, Dr. Veras has mapped numerous different positions where a ‘Planet Nine’ could change the fate of the solar system. The further away and the more massive the planet is, the higher the chance that the solar system will experience a violent future.

This discovery could shed light on planetary architectures in different solar systems. Almost half of existing white dwarfs contain rock, a potential signature of the debris generated from a similarly calamitous fate in other systems with distant “Planet Nines” of their own.

In effect, the future death of our sun could explain the evolution of other planetary systems.

Dr. Veras explains the danger that Planet Nine could create: "The existence of a distant massive planet could fundamentally change the fate of the solar system. Uranus and Neptune in particular may no longer be safe from the death throes of the Sun. The fate of the solar system would depend on the mass and orbital properties of Planet Nine, if it exists."

"The future of the Sun may be foreshadowed by white dwarfs that are 'polluted' by rocky debris. Planet Nine could act as a catalyst for the pollution. The Sun's future identity as a white dwarf that could be 'polluted' by rocky debris may reflect current observations of other white dwarfs throughout the Milky Way," Dr Veras adds.

The paper ‘The fates of solar system analogues with one additional distant planet’ will be published in the Monthly Notices of the Royal Astronomical Society.

11
A team of Carnegie scientists has discovered three giant planets in a binary star system composed of stellar ''twins'' that are also effectively siblings of our Sun. One star hosts two planets and the other hosts the third. The system represents the smallest-separation binary in which both stars host planets that has ever been observed. The findings, which may help explain the influence that giant planets like Jupiter have over a solar system's architecture, have been accepted for publication in The Astronomical Journal.

New discoveries coming from the study of exoplanetary systems will show us where on the continuum of ordinary to unique our own Solar System's layout falls. So far, planet hunters have revealed populations of planets that are very different from what we see in our Solar System. The most-common exoplanets detected are so-called super-Earths, which are larger than our planet but smaller than Neptune or Uranus. Given current statistics, Jupiter-sized planets seem fairly rare -- having been detected only around a small percentage of stars.

This is of interest because Jupiter's gravitational pull was likely a huge influence on our Solar System's architecture during its formative period. So the scarcity of Jupiter-like planets could explain why our home system is different from all the others found to date.

The new discovery from the Carnegie team is the first exoplanet detection made based solely on data from the Planet Finder Spectrograph -- developed by Carnegie scientists and mounted on the Magellan Clay Telescopes at Carnegie's Las Campanas Observatory. PFS is able to find large planets with long-duration orbits or orbits that are very elliptical rather than circular, including the new trio of planets discovered in this `"twin'" star study. This special capability comes from the long observing baseline of PFS; it has been taking observations for six years.

Led by Johanna Teske, the team included a number of Carnegie scientists from both the Department of Terrestrial Magnetism in Washington, DC, and the Carnegie Observatories in Pasadena, CA, as well as Steve Vogt of the University of California Santa Cruz.

"We are trying to figure out if giant planets like Jupiter often have long and, or eccentric orbits," Teske explained. "If this is the case, it would be an important clue to figuring out the process by which our Solar System formed, and might help us understand where habitable planets are likely to be found."

The twin stars studied by the group are called HD 133131A and HD 133131B. The former hosts two moderately eccentric planets, one of which is, at a minimum, about 1 and a half times Jupiter's mass and the other of which is, at a minimum, just over half Jupiter's mass. The latter hosts one moderately eccentric planet with a mass at least 2.5 times Jupiter's.

The two stars themselves are separated by only 360 astronomical units (AU). One AU is the distance between the Earth and the Sun. This is extremely close for twin stars with detected planets orbiting the individual stars. The next-closest binary system that hosts planets is composed of two stars that are about 1,000 AU apart.

The system is even more unusual because both stars are "metal poor," meaning that most of their mass is hydrogen and helium, as opposed to other elements like iron or oxygen. Most stars that host giant planets are "metal rich." Only six other metal-poor binary star systems with exoplanets have ever been found, making this discovery especially intriguing.

Adding to the intrigue, Teske used very precise analysis to reveal that the stars are not actually identical "twins" as previously thought, but have slightly different chemical compositions, making them more like the stellar equivalent of fraternal twins.

This could indicate that one star swallowed some baby planets early in its life, changing its composition slightly. Alternatively, the gravitational forces of the detected giant planets that remained may have had a strong effect on fully-formed small planets, flinging them in towards the star or out into space.

"The probability of finding a system with all these components was extremely small, so these results will serve as an important benchmark for understanding planet formation, especially in binary systems," Teske explained.

The other members of Teske's team were Carnegie's Stephen Shectman, Matías Díaz, Paul Butler, Jeffrey Crane, and Pamela Arriagada.

This work was funded by NASA, CONICYT-PFCHA/Doctorado Nacional Chile, and the Carnegie Institution for Science.

The research made use of the SIMBAD database, operated at CDS in Strasbourg, France, and the Exoplanet Orbit Database and Exoplanet Data Explorer.

12
Fascinating new light could be shed on the complex atmospheres of planets which orbit stars outside our own solar system, thanks to pioneering new research.

A team of international researchers, led by astrophysicists from the University of Exeter, Columbia University and NASA Goddard Institute for Space Studies, used state-of -the-art modelling techniques to extensively study the atmosphere of a 'hot Jupiter' found 150 lightyears from Earth.

The scientists adapted the state-of-the art computer model used by the Met Office to study Earth's atmosphere to perform simulations of these exotic distant worlds that are the size of Jupiter, but orbiting more closely to their parent star than Mercury does to the Sun.

The results were compared to observations carried out using the powerful Spitzer Space Telescope, probing our understanding of the conditions within the atmospheres of these planets.

The research revealed results that were largely consistent with existing observations, most notably around the effect of heat transport in the upper atmospheres of the exoplanets where extreme velocity winds carry heat so rapidly that the hottest part of the atmosphere is shifted away from the closest point to the star, where it would be expected to be.

However, the study also revealed some intriguing discrepancies, including significant differences between the observed and expected brightness of the hot Jupiter's `nightside' -- or the hemisphere facing away from the star.

The team are now calling on further studies to be conducted to unlock the secrets of how these planets evolve in such close proximity to their host.

Dr Nathan Mayne, Senior Lecturer in Astrophysics at the University of Exeter and one of the authors of the study said: "This research is not only important in developing our understanding of this exotic class of planets, but also represents the first steps to building a deeper understanding of how planetary atmospheres and climates work across a range of conditions, including those more conducive to life.

"Additionally, over a longer timescale, by keeping close connection between astrophysicists and climate researchers, this programme will aid in the understanding of our own changing climate."

The Met Office weather and climate prediction model is one of the most advanced models of its kind. However, this research applies this model to a planet with conditions far from that present on Earth, with temperatures exceeding one thousand degrees and an atmosphere spanning pressures orders of magnitude larger.

A key finding of this research indicates that there is still no clear understanding of how the material that is moving from the hot dayside of the planet onto the cold nightside both cools and alters it chemical composition.

Additionally, the team found intriguing hints that the deeper atmosphere, inaccessible to observations, supports large-scale, slow moving circulations potentially altering the temperature structure deep in the hot Jupiter's atmosphere.

Dr David S. Amundsen, formerly of the University of Exeter and now at Columbia University and NASA Goddard Institute for Space Studies in the USA, and lead author of the paper added: "Models such as the UM uniquely allows us to study in great detail how the atmospheres of these planets change depending on different factors such as irradiation, composition and rotation. These models are becoming increasingly important to understand the continuously improving observations that are now starting to reveal the complex three-dimensional nature of these atmospheres."

The UK Met Office GCM with a sophisticated radiation scheme applied to the the Jupiter HD209458 is published in Astronomy & Astrophysics and is available online.

13
Science and Information / Earth's carbon points to planetary smashup
« on: January 15, 2017, 08:32:49 PM »
Research by Rice University Earth scientists suggests that virtually all of Earth's life-giving carbon could have come from a collision about 4.4 billion years ago between Earth and an embryonic planet similar to Mercury.

In a new study this week in Nature Geoscience, Rice petrologist Rajdeep Dasgupta and colleagues offer a new answer to a long-debated geological question: How did carbon-based life develop on Earth, given that most of the planet's carbon should have either boiled away in the planet's earliest days or become locked in Earth's core?

"The challenge is to explain the origin of the volatile elements like carbon that remain outside the core in the mantle portion of our planet," said Dasgupta, who co-authored the study with lead author and Rice postdoctoral researcher Yuan Li, Rice research scientist Kyusei Tsuno and Woods Hole Oceanographic Institute colleagues Brian Monteleone and Nobumichi Shimizu.

Dasgupta's lab specializes in recreating the high-pressure and high-temperature conditions that exist deep inside Earth and other rocky planets. His team squeezes rocks in hydraulic presses that can simulate conditions about 250 miles below Earth's surface or at the core-mantle boundary of smaller planets like Mercury.

"Even before this paper, we had published several studies that showed that even if carbon did not vaporize into space when the planet was largely molten, it would end up in the metallic core of our planet, because the iron-rich alloys there have a strong affinity for carbon," Dasgupta said.

Earth's core, which is mostly iron, makes up about one-third of the planet's mass. Earth's silicate mantle accounts for the other two-thirds and extends more than 1,500 miles below Earth's surface. Earth's crust and atmosphere are so thin that they account for less than 1 percent of the planet's mass. The mantle, atmosphere and crust constantly exchange elements, including the volatile elements needed for life.

If Earth's initial allotment of carbon boiled away into space or got stuck in the core, where did the carbon in the mantle and biosphere come from?

"One popular idea has been that volatile elements like carbon, sulfur, nitrogen and hydrogen were added after Earth's core finished forming," said Li, who is now a staff scientist at Guangzhou Institute of Geochemistry, Chinese Academy of Sciences. "Any of those elements that fell to Earth in meteorites and comets more than about 100 million years after the solar system formed could have avoided the intense heat of the magma ocean that covered Earth up to that point.

"The problem with that idea is that while it can account for the abundance of many of these elements, there are no known meteorites that would produce the ratio of volatile elements in the silicate portion of our planet," Li said.

In late 2013, Dasgupta's team began thinking about unconventional ways to address the issue of volatiles and core composition, and they decided to conduct experiments to gauge how sulfur or silicon might alter the affinity of iron for carbon. The idea didn't come from Earth studies, but from some of Earth's planetary neighbors.

"We thought we definitely needed to break away from the conventional core composition of just iron and nickel and carbon," Dasgupta recalled. "So we began exploring very sulfur-rich and silicon-rich alloys, in part because the core of Mars is thought to be sulfur-rich and the core of Mercury is thought to be relatively silicon-rich.

"It was a compositional spectrum that seemed relevant, if not for our own planet, then definitely in the scheme of all the terrestrial planetary bodies that we have in our solar system," he said.

The experiments revealed that carbon could be excluded from the core -- and relegated to the silicate mantle -- if the iron alloys in the core were rich in either silicon or sulfur.

"The key data revealed how the partitioning of carbon between the metallic and silicate portions of terrestrial planets varies as a function of the variables like temperature, pressure and sulfur or silicon content," Li said.

The team mapped out the relative concentrations of carbon that would arise under various levels of sulfur and silicon enrichment, and the researchers compared those concentrations to the known volatiles in Earth's silicate mantle.

"One scenario that explains the carbon-to-sulfur ratio and carbon abundance is that an embryonic planet like Mercury, which had already formed a silicon-rich core, collided with and was absorbed by Earth," Dasgupta said. "Because it's a massive body, the dynamics could work in a way that the core of that planet would go directly to the core of our planet, and the carbon-rich mantle would mix with Earth's mantle.

"In this paper, we focused on carbon and sulfur," he said. "Much more work will need to be done to reconcile all of the volatile elements, but at least in terms of the carbon-sulfur abundances and the carbon-sulfur ratio, we find this scenario could explain Earth's present carbon and sulfur budgets."

14
Science and Information / Icy giant planet growing around a nearby star
« on: January 15, 2017, 08:32:26 PM »
Astronomers found signs of a growing planet around TW Hydra, a nearby young star, using the Atacama Large Millimeter/submillimeter Array (ALMA). Based on the distance from the central star and the distribution of tiny dust grains, the baby planet is thought to be an icy giant, similar to Uranus and Neptune in our Solar System. This result is another step towards understanding the origins of various types of planets.

A number of extrasolar planets have been found in the past two decades and now researchers agree that planets can have a wide variety of characteristics. However, it is still unclear how this diversity emerges. Especially, there is still debate about how the icy giant planets, such as Uranus and Neptune, form.

To take a close look at the planet formation site, a research team led by Takashi Tsukagoshi at Ibaraki University, Japan, observed the young star TW Hydrae. This star, estimated to be 10 million years old, is one of the closest young stars to Earth. Thanks to the proximity and the fact that its axis of rotation points roughly in Earth's direction, giving us a face-on-view of the developing planetary system, TW Hydrae is one of the most favorable targets for investigating planet formation.

Past observations have shown that TW Hydrae is surrounded by a disk made of tiny dust particles. This disk is the site of planet formation. Recent ALMA observations revealed multiple gaps in the disk. Some theoretical studies suggest that the gaps are evidence of planet formation.

The team observed the disk around TW Hydrae with ALMA in two radio frequencies. Since the ratio of the radio intensities in different frequencies depends on the size of the dust grains, researchers can estimate the size of dust grains. The ratio indicates that smaller, micrometer-sized, dust particles dominate and larger dust particles are absent in the most prominent gap with a radius of 22 astronomical units.

Why are smaller dust particles selectively located in the gap in the disk? Theoretical studies have predicted that a gap in the disk is created by a massive planet, and that gravitational interaction and friction between gas and dust particles push the larger dust out from the gap, while the smaller particles remain in the gap. The current observation results match these theoretical predictions.

Researchers calculated the mass of the unseen planet based on the width and depth of the 22 au gap and found that the planet is probably a little more massive than the Neptune. "Combined with the orbit size and the brightness of TW Hydrae, the planet would be an icy giant planet like Neptune," said Tsukagoshi.

Following this result, the team is planning further observations to better understand planet formation. One of their plans is to observe the polarization of the radio waves. Recent theoretical studies have shown that the size of dust grains can be estimated more precisely with polarization observations. The other plan is to measure the amount of gas in the disk. Since gas is the major component of the disk, the researchers hope to attain a better estimation of the mass of the forming planet.

15
Science and Information / The death of a planet nursery?
« on: January 15, 2017, 08:32:03 PM »
The dusty disk surrounding the star TW Hydrae exhibits circular features that may signal the formation of protoplanets. LMU astrophysicist Barbara Ercolano argues, however, that the innermost actually points to the impending dispersal of the disk.

When the maps appeared at the end of March, experts were electrified. The images revealed an orange-red disk pitted with circular gaps that looked like the grooves in an old-fashioned long-playing record. But this was no throwback to the psychedelic Sixties. It was a detailed portrait of a so-called protoplanetary disk, made up of gas and dust grains, associated with a young star -- the kind of structure out of which planets could be expected to form. Not only that, the maps showed that the disk around the star known as TW Hydrae exhibits several clearly defined gaps. Astronomers speculated that these gaps might indicate the presence of protoplanets, which had pushed away the material along their orbital paths. And to make the story even more seductive, one prominent gap is located at approximately the same distance from TW Hydrae as Earth is from the Sun -- raising the possibility that this putative exoplanet could be an Earth-like one.

Now an international team led by Professor Barbara Ercolano at LMU's Astronomical Observatory has compared the new observations with theoretical models of planet formation. The study indicates that the prominent gap in the TW Hydrae system is unlikely to be due to the action of an actively accreting protoplanet. Instead, the team attributes the feature to a process known as photoevaporation. Photoevaporation occurs when the intense radiation emitted by the parent star heats the gas, allowing it to fly away from the disk. But although hopes of a new exo-Earth orbiting in the inner gap of TW Hydrae may themselves have evaporated, the system nevertheless provides the opportunity to observe the dissipation of a circumstellar disk in unprecedented detail. The new findings appear in the journal Monthly Notices of the Royal Astronomical Society (MNRAS).

Only 175 light-years from Earth

The dusty disk that girdles TW Hydrae has long been a favored object of observation. The star lies only 175 light-years from Earth, and is it relatively young (around 106 years old). Moreover, the disk is oriented almost perpendicular to our line of sight, affording a well-nigh ideal view of its structure. The spectacular images released in March were made with the Atacama Large Millimeter/submillimeter Array (ALMA), an array of detectors in the desert of Northern Chile. Together, they form a radiotelescope with unparalleled resolving power that can detect the radiation from dust grains in the millimeter size range.

Photoevaporation is one of the major forces that shape the fate of circumstellar disks. Not only can it destroy such disks -- which typically have a life expectancy of around 10 million years -- it can also stop young planets being drawn by gravity and by the interaction with the surrounding disc gas into their parent star. The gaps caused by the action of photoevaporation on the disk, park the planets at their location by removing the gas, allowing the small dusty clumps to grow into fully fledged planets and steering them into stable orbits. However, in the case of the TW Hydrae system, Barbara Ercolano believes that the inner gap revealed by the ALMA maps is not caused by a planet, but represents an early stage in the dissipation of the disk. This view is based on the fact that many characteristic features of the disk around TW Hydrae, such as the distance between the gap and the star, the overall mass accretion rate, and the size and density distributions of the particles, are in very good agreement with the predictions of her photoevaporation model.

Pages: [1] 2 3 ... 14