SPIDER shrinks telescopes with far-out design

Author Topic: SPIDER shrinks telescopes with far-out design  (Read 183 times)

Offline saikat07

  • Hero Member
  • *****
  • Posts: 630
  • Test
    • View Profile
    • My Web Address
SPIDER shrinks telescopes with far-out design
« on: November 20, 2016, 06:24:05 PM »
In the space business, weight and size are what run up the bills. So imagine the appeal of a telescope that’s a tenth to as little as a hundredth as heavy, bulky and power hungry as the conventional instruments that NASA and other government agencies now send into space. Especially alluring is the notion of marrying the time-tested technology called interferometry, used in traditional observatories, with the new industrial field of photonics and its almost unimaginably tiny optical circuits.

Say hello to SPIDER, or Segmented Planar Imaging Detector for Electro-optical Reconnaissance.

Some doubt it will ever work.

But its inventors believe that, once demonstrated at full-scale, SPIDER will replace standard telescopes and long-range cameras in settings where room is scarce, such as on planetary probes and reconnaissance satellites.

Researchers at the Lockheed Martin Advanced Technology Center in Palo Alto, Calif., with partners in a photonics lab at the University of California, Davis, have described work on SPIDER for several years at specialty conferences. In January, they revealed their progress with a splash to the public in a press release and polished video.

Somewhat like a visible-light version of a vast field of radio telescopes, but at a radically smaller scale, a SPIDER scope’s surface would sparkle with hundreds to thousands of lenses about the size found on point-and-shoot cameras. The instrument might be a foot or two across and only as thick as a flat-screen TV.

Transit system for light
SPIDER probably won’t be equivalent to a large instrument such as the Hubble Space Telescope, but it could be a smaller, lighter alternative to modest telescopes and long-range cameras. Experts tend to rank telescopes by their aperture — the size of the bucket that catches light or other such radiation. The wider the bucket’s mouth, the higher the resolution. Ordinarily, behind the bucket’s maw is an extensive framework for massive lenses, mirrors and heating or cooling systems. Hubble’s aperture spans 2.4 meters; its power-generating solar panels enlarge it to the size and weight of a winged city bus. Even a compact telescope with a saucer-sized lens might have more than a kilogram of equipment stretched behind its face for a third of a meter or so.
Senior Lecturer,
Department Of Electrical and Electronic Engineering
Faculty of Engineering,
Daffodil International University.