why and how 0! =1

Author Topic: why and how 0! =1  (Read 926 times)

Offline Md.Shahjalal Talukder

  • Full Member
  • ***
  • Posts: 108
  • Test
    • View Profile
why and how 0! =1
« on: March 30, 2017, 12:17:24 AM »
0! = 1 কেন, কিভাবে ?

যদি n একটি স্বাভাবিক সংখ্যা হয় তবে n এর factorial কে n! দ্বারা প্রকাশ করা হয় যেখানে,

n! = n x(n-1)x(n-2)x.... x3x2x1

যেমনঃ

3! = 3 x 2 x 1 = 6
4! = 4 x 3 x 2 x 1 =24
5! = 5 x 4 x 3 x 2 x 1 = 120
একই ভাবে, 1! = 1

কিন্তু 0 এর factorial কত??
উত্তরঃ 0! = 1

এই ব্যপারটি হজম করা বোধ হয় কিছুটা কষ্টকর।কেননা ইতোমধ্যে আমরা জেনেছি
যে 1! = 1; এখন আবার বলছি, 0! = 1
অর্থাৎ,

0! = 1!

তাহলে উভয় পাশ হতে " ! " চিহ্ন কেটে দিয়ে পাই,
0 = 1 (গণিতপ্রেমিরা নিশ্চয় আমার কথা শোনে চটে যাবেন।)

আসলে " ! " চিহ্নটি " + " কিংবা " x " অপারেটরের মতো নয়। গণিতে এটি আসলে একটি লজিক কে নির্দেশ করে। আসছি সেসবে তার আগে চলুন দেখে নেওয়া যাক কিভাবে
0! = 1 হয়।

factorial এর সংজ্ঞানুযায়ী আমরা লিখতে পারি,

n! = n x (n-1) x.....x 3 x 2 x 1
বা, n! = n x (n-1)!
.'. (n-1)! = n!/n.........(১)

(১) এ n=1 বসিয়ে পাই,
(1-1)! = 1!/1
বা, 0! = 1/1
সুতরাং, 0! = 1

আসলে এটি অনেক ভাবে দেখানো যায়।যেমনঃ

গামা ফাংশনের সংজ্ঞা থেকে জানি,

Gama(s) = (s-1)!
s=1 বসিয়ে পাই,
Gama(1) = (1-1)!
বা, 0! = Gama(1)
কিন্তু Gama(1) = 1
সুতরাং, 0! = 1

উপরের প্রমাণ দুটি দেখে অনেকে এই বলে অভিযোগ করতে পারে যে এটি আসলে চাপিয়ে দেয়া এক নিয়ম যেখানে কোন লজিক নেই বরং গণিতের বিশেষ কিছু ফর্মুলা কে টিকিয়ে রাখতে 0! = 1 লিখা হয়।

অভিযোগটি যে মুটেও সত্যি না পারমুটেশনের ধারণা থেকে সেটি ব্যাখ্যা করা যায়।

আমরা জানি একটি সেটের প্রতিটি উপাদান অনন্য।সেটের এই উপাদানগুলো কে যদি ভিন্ন ভিন্ন বিন্যাসে সজ্জিত করি তাহলে ঠিক কত উপায়ে সেটি করা যাবে?? আসলে এর উত্তরটি নির্ভর করবে সেটের উপাদান সংখ্যার উপর।মনে করি একটি সেটের উপাদান গুলো হল a, b, c। উপাদানগুলোকে বিভিন্ন বিন্যাসে সাজালে পাওয়া যায়,
(a,b,c),(a,c,b),(b,a,c),(b,c,a),(c,a,b),(c,b,a) ইত্যাদি। এছাড়া আর কোন বিন্যাস সম্ভব নয়।এখানে দেখা যায় একটি সেটের তিনটি উপাদানের জন্য ছয়টি বিন্যাস পাওয়া যায়। একই ভাবে,
চারটি উপাদানের জন্য ২৪টি
পাঁচটি উপাদানের জন্য ১২০টি
ছয়টি উপাদানের জন্য ৭২০টি
ইত্যাদি।

অর্থাৎ একটি সেটের উপাদান n টি হলে এর উপাদানগুলোর বিন্যাস সংখ্যা হবে n।(মূলত বিন্যাসের এই ধারণা থেকেই factorial এর প্রচলন।)

আমরা জানি কোন সেটের উপাদান সংখ্যা ভগ্নাংশ কিংবা ঋনাত্মক হতে পারে না। কিন্তু শূন্য হতে পারে। আর তাই n কেবল natural number এর জন্য সংজ্ঞায়িত নয় বরং 0 এর জন্যও সংজ্ঞায়িত।

এবার দেখা যাক কেন 0! = 1

ইতোপূর্বে দেখানো হয়েছে যে কোন সেটের উপাদান সংখ্যা n হলে এর বিন্যাস সংখ্যা হবে n! যদি একটি সেটের উপাদান 10 হয় তবে এর উপাদানগুলো কে 10! ভাবে সাজানো যাবে।যদি কোন সেটে একটি মাত্র উপাদান থাকে তবে এটির কেবল একটি বিন্যাস পাওয়া যাবে। কথা হল যদি কোন উপাদান না থাকে তবে এর বিন্যাস সংখ্যা কত?? লাখ টাকার প্রশ্ন!

যদি কোন সেটের উপাদান না থাকে সেটিকে আমরা ফাঁকা সেট বলি।লক্ষ করুন এটি অবশ্যই একটি সেট।উপাদান না থাকলেও এর অস্থিত্ব আছে। আর তাই এরও বিন্যাস থাকতে হবে।অর্থাৎ এর বিন্যাস সংখ্যা শূন্য নয়।তাহলে সেটি কত?? বলার অপেক্ষা রাখেনা যে সেটি অনন্য।
আর তাই 0! = 1. (Collected from : গণিত এবং আরো গণিত)