
The 2005 ACM ASIA
Programming Contest

Dhaka Site

Sponsored by IBM
Hosted by North South University

Dhaka, Bangladesh

22nd and 23rd September 2005
You get 14 Pages

8 Problems
Discussion on Problemset*

 1

 Problem A

Harmonic Mean
Input: a.in

Output: Standard Output

The harmonic mean (NH) of N numbers a1, a2, a3 … an-1, an is defined as below:

nn

N

aaaaa

N
H

11
...

111

1321

?????
?

?

So the harmonic mean of four numbers a, b, c, d is defined
as

4321

4 1111
4

aaaa

H
???

?

In this problem your job is very simple: given N (0<N<9)
integers you will have to find their harmonic mean.

Input
The first line of the input file contains an integer S (0<S<501), which indicates how many
sets of inputs are there. Each of the next S lines contains one set of input. The description of
each set is given below:

Each set starts with an integer N (0<N<9), which indicates how many numbers are there in

this set. This number is followed by N integers)1010(,...,, 321 ?? iN aaaaa .

Output
For each set of input produce one line of output. This line contains the serial of output
followed by two integers m and n separated by a front slash. These two numbers actually

indicate that the harmonic mean of the given four numbers is n
m

. You must ensure that

gcd(m, n)=1 or in other words m and n must be relative prime. The value of m and n will fit
into a 64-bit signed integer.

Sample Input Output for Sample Input
2
4 1 2 3 4
4 2 2 3 1

Case 1: 48/25
Case 2: 12/7

 2

Problem B

Robots inside the Labyrinth
Input File: b.in

Output: Standard Output

Dr. Jemison is simulating the navigation system of a robot. He is using a 2D labyrinth
containing several rectangular blocks. All blocks are placed either vertically or horizontally.
Spaces are available around the blocks. A robot can use these empty places for its movement.
While moving, the robot is not allowed to touch or pass through any block. Also, robot’s
movement must be either horizontal or vertical. A sample scenario is given in the following
picture, where rounded blocks indicate the position of robot –

The main aspect of Jemison’s experiment is to test whether a robot can turn timely in the
right direction and reach its destination. Jemison has already embedded the complete map of
the labyrinth and its final position inside the robot’s memory. As turning is costly, Jemison
wants the robot to reach its destination using minimum number of turns. For example, in the
above figure, it requires at least two turns to reach the destination.

In this problem you will be given a labyrinth of infinite extent. There can be zero or more
rectangular blocks inside the labyrinth. Each rectangular block will be defined by its bottom-
left (lx, by) and top-right (rx, ty) corners. Rectangular blocks will not overlap one another
but they can share a common border line. The starting and ending positions of the robot will
be denoted by Cartesian coordinates. These positions will not touch any block or stay inside
it. You have to find the minimum number of turns that the robot must make to reach its
destinations from starting positions.

Input
In the first line, there will be an integer, T (1=T=50) denoting the number of tests. Each
input will start with an integer, N (0=N=50), where N is the number of rectangular blocks.
Following N lines will contain the description of a rectangular block. Each line will contain 4
integers lx, by, rx (greater than lx), ty (greater than by). Next line will contain another

 3

integer K (1=K=20) which is the number of queries. Each query will contain starting and
ending coordinates of the robot in a line (two positions will be distinct always). The
coordinates will be positive integer and will not exceed 108.

Two successive input cases will be separated by a blank line.

Output
For each input set, output must start with a line “Labyrinth #D”, where D is the test number
starting from 1. It will be followed by minimum number of turns for each query in a separate
line. If the robot somehow cannot reach to its destination, print “Impossible.”. See sample
input output for clarification.

Sample Input Output for Sample Input
2
0
2
10 10 20 20
10 10 10 20

1
10 10 100 100
2
9 10 101 10
1 1 1000 1000

Labyrinth #1
1
0
Labyrinth #2
2
1

 4

Problem C

Invite Your Friends
Input File: c.in

Output: Standard Output

Rafiq lives in a strange square shaped country FONO where each city is equal in size and
square in shape and connected to at most four cities. From the top view of the country, it
looks like a grid. For simplicity, we assume that each city is recognized by two numbers: the
row and column number, starting from (0, 0). Each city is connected by road from those cities
which share the same borderline. So from city (i,j), any one can go to city (i-1,j) or city
(i+1,j) or city (i,j-1) or city(i,j+1) and no one can move more than one city in a day. The
rules of the country are very simple: when any one stays in a city, he must pay an amount of
money to that city which covers the cost of staying in that city for one day and the cost to
reach any one of the neighbor cities where he wants to go. He can stay in a city as many days
as he wants but he needs to pay for each day.

4
F1 5 10 20

F2

40 30 40 10

18 53 4 32
F3

52 37 42 43

Fig: Country FONO

Every year the government of FONO organizes a lottery and gives a chance to one person
and his F friends to stay in any city of the country without any cost. This lottery is valid for
only T days. This year Rafiq has won this lottery and has decided to invite 3 of his friends.
He has also decided to bear the cost to reach that city for all of his friends. So he needs to
calculate which city is suitable for him to invite – that is minimum amount of money required
to reach in that city by his friends. Suppose F1 lives at City (0, 0). To reach the city (0, 3), he
needs to pay 19. Because after reaching city (0, 3), he need not to pay any money.
(Remember that, the lottery is valid for only T days. So all of his friends must reach in the
selected city within T days.)

Input
The input consists of a number of cases (Less than 31). Each case starts with a line specifying
three integer numbers N, F, T. Here N (0<N=25) represents the size of the country, F
(0<F=5) represents the number of friends Rafiq wants to invite, and T (0<T=25) represents
the number of days within which the lottery is valid. After that, N x N positive numbers
(<10000) are given which represents the cost of each city of the country. After that, there are

 5

F lines. Each line contains 2 numbers – x and y - representing the current position of Rafiq’s
friends. Input is terminated by a line where N=F=T=0.

Output
For each test case, first print the “Case #i:” where i is the test case number, and then print
“Impossible.” if it is not possible to find a city where each one can meet within the specified
day. If it is possible, print the position of the city and the cost to reach that city. If more than
one solution of minimum cost is possible, select the one with minimum row number. If still
more than one solution found, print the one with minimum column number.

Sample Input Output for Sample Input
4 3 3
4 5 10 20
40 30 40 10
18 53 4 32
52 37 42 43
0 0
0 3
2 3
4 3 2
4 5 10 20
40 30 40 10
18 53 4 32
52 37 42 43
0 0
0 3
2 3
0 0 0

Case #1: Selected city (0,3) with minimum cost 61.
Case #2: Impossible.

 6

Problem D

Understanding Recursion
Input File: d.in

Output: Standard Output

Understanding recursion is not easy but unfortunately to solve this problem you need to
understand it quite well. Below you can see a program written in plain C, which takes as
input up to 40000, 32- bit integers and produces an output. It continues to do so until a
number set of zero elements appear. Given the input your job is to find out what output will
the following program will produce.

#include<stdio.h>
#include<math.h>
int const MAX=40000;
long nums[MAX];
long recur(int i,int j,int N)
{
 long t1=0,t2=0,t=0;
 if(i<0 || j<0 || i>=N || j>=N) return 0;
 if(i==j) t=recur(i+1,j+1,N);
 if(i<=j) t1=(nums[i]>nums[j])+recur(i,j+1,N);
 if(i>=j) t2=(nums[i]>nums[j])+recur(i,j-1,N);
 return t1+t2+t;
}
int main(void)
{
 long int i,j,N,kase=0;
 freopen("d.in","r",stdin);
 while(1)
 {
 scanf("%d",&N);
 for(i=0;i<N;i++)
 scanf("%ld",&nums[i]);
 if(N==0) break;
 printf("Case %d: %ld\n",++kase,recur(0,0,N));
 }
 return 0;
}

Input
The input file contains maximum 10 sets of input. The description of each set is given below:

The first line of each set is an integer N (0=N=40000) which indicates how many numbers
are in this set. Each of the next N lines contains a number. All these numbers are less than
2000000001.

 7

Input is terminated by a set where the value of N is zero.

Output
For the input file produce the output that the program above will produce (Assuming that it
will run smoothly in the computer and no stack overflow will occur) for the given input file.

Sample Input Output for Sample Input
4
1
2
3
4
2
6
1
0

Case 1: 6
Case 2: 1

 8

Problem E

Matrissor
Input File: e.in

Output: Standard Output

Matrissor is a special kind of processor which can multiply a sequence of matrices in quick
time. It has certain capacity K which means the maximum number of computations
(multiplications here) it can perform at one step. For example if K is 1000, then it can
multiply 2 matrices of 10x10 dimension. But it cannot multiply a (10x11) matrix and another
(11x10) matrix which require 1100 multiplications. There is a limitation of matrissor. It
cannot multiply a sequence of matrices optimally. If it is to multiply m matrices, it processes
first (m-1) matrices first and then multiples the resultant matrix with mth matrix.

Your task is to multiply a sequence of matrices optimally using the matrissor with capacity
K. Here optimality depends on one criterion. You have to use the matrissor minimum number
of times. Say you have 4 matrices available - M1(10x1), M2(1x10), M3(10x1) and M4(1x10).
Now if you use a 100 capacity matrissor, then you can multiply M2, M3 and M4 in one step
and in last step you can multiply M1, (M2, M3, M4). This can be expressed as
(M1,(M2,M3,M4)), where (M2, M3, M4) denotes the resultant matrix after multiplying M2,
M3, M4.

Input
The input file contains the number of test cases T first, which is at most 30. Each test case
begins with a positive integer N (2=N=50) which is the number of matrices. Following N
lines contain the dimensions of matrices, one line per matrix. Dimensions will be valid and
any dimension will be in between 1 to 50. Next line will contain another integer Q(1=Q=N)
which is the number of queries, followed by the capacities of the matrissor in one line. Each
test case will be followed by a blank line.

Output
For each set of input, print a line “Matrix #D” in first line, where D is the test case number
starting from 1. In next Q lines print the minimum number of steps to multiply all the
matrices. If it is not possible to multiply the matrices, then print "Impossible.". Put a blank
line after each output set. See sample output for details.

Sample Input Output for Sample Input
2
4
10 1
1 10
10 1
1 10
3
100 99 300

4
1 1

Matrix #1
2
Impossible.
1

Matrix #2
3
2

 9

1 1
1 1
1 1
2
1 2

 10

 Problem F

Altitude Triangle
Input File: f.in

Output: Standard Output

If DEF is an acute triangle and DA, EB and FC are its three heights on EF, DF and DE
respectively, then the triangle ABC is called the altitude triangle of triangle DEF. It is well
known that DA, EB and FC are concurrent and let us assume that their common point of
intersection is O. So point O is called the orthocenter of triangle DEF. It can be proved that
O is the in center of triangle ABC. In this problem you will be given the altitude triangle
ABC and your job is to find out the corresponding acute triangle DEF.

Input
The input file contains at most 1001 lines of input. Each line contains six integers x1, y1, x2,
y2 and x3, y3. These six integers denote an altitude triangle with vertex A (x1, y1), B (x2, y2)
and C (x3, y3) respectively. Input is terminated by a case where all six integers are zero. The
points A, B and C will not be collinear.

Output
For each line of input produce four lines of outputs. The description of these four lines is
given below:

The first line contains the serial of output. Each of the next three lines contains two floating-
point numbers, which are actually the coordinate of D, E and F respectively. Note that for a
given altitude triangle ABC, there can be four possible triangles DEF. But you are requested
only to find the one that is acute. Also note that judge data will be such that precision errors
should not occur if you use double precision floating-point numbers. Absolute values of none

 11

of the output numbers will be greater than 100000 and all the numbers should have three
digits after the decimal point.

Sample Input Output for Sample Input
682 1369 3981 1233 4333 4583
4131 734 1249 4705 2815 475
2815 475 4131 734 1249 4705
0 0 0 0 0 0

Case 1:
6539.582 3443.107
-1528.155 7610.801
1491.578 -917.367
Case 2:
-1810.802 3068.269
3810.093 -82.858
6872.845 7713.274
Case 3:
6872.845 7713.274
-1810.802 3068.269
3810.093 -82.858

 12

Problem G

The Ultimate Bamboo Eater
Input File: g.in

Output: Standard Output

Jingjing the panda lives in a forest containing n pieces of
bamboo land. Each bamboo land is very small and can be
regarded as a single point. Bamboo land i contains Li
bamboos and is associated with a ``deliciousness'' Wi.

Jingjing eats all bamboos in a selected bamboo land
every day. He has a bad habit: the deliciousness

 13

Output
For each test case, print the case number followed by the number of days Jingjing can
survive. Look at the output for sample input for details.

Sample Input Output for Sample Input
2
3
0 0 3 4
2 2 2 3
5 5 1 3
3
0 0 3 4
2 2 2 3
5 5 1 3

Case 1: 2
Case 2: 2

 14

Problem H

Counting Triangles
Input File: h.in

Output: Standard Output

Triangles are polygons with three sides and strictly positive area. Lattice triangles are the
triangles all whose vertexes have integer coordinates. In this problem you have to find the
number of lattice triangles in an M*N grid. For example in a (1x2) grid there are 18 different
lattice triangles as shown in the picture below:

Input
The input file contains at most 21 sets of inputs.

Each set of input consists of two integers M and N (0<M,N<=1000). These two integers
denote that you have to count triangles in an (MxN) grid.

Input is terminated by a case where the value of M and N are zero. This case should not be
processed.

Output
For each set of input produce one line of output. This output contains the serial of output
followed by the number lattice triangles in the (MxN) grid. You can assume that number of
triangles will fit in a 64-bit signed integer.

Sample Input Output for Sample Input
1 1
1 2
0 0

Case 1: 4
Case 2: 18

 15

ACM ICPC Regional Contest - Dhaka Site
Discussion on Problemset

(Added After the Contest)

Problem A – Harmonic Mean

Type: This is a problem to check whether a person can code simple things in C/C++
or Java. It was expected that all teams will solve it.
Difficulty Level: 1 (Very Easy)
How to solve: Not required.

Problem B – Robots inside the Labirynth

Type: Basically a searching problem with some flavor of geometry.
Difficulty Level: 6 (Medium Hard), if you have knowledge of handling rectangles,
otherwise quite difficult
How to solve: You have to form a grid with all possible x-coordinates and y-
coordinates. The grid dimension will be at most (2n+2)*(2n+2), if n is the number of
rectangles. Now the grids which are a part of given rectangular blocks will be
inaccessible. Rest grid locations will be accessible. Apply a BFS from start grid
location to the end grid location. Choose all 4 directions initially. Be careful when
number of turns is zero.

Problem C – Invite Your Friends

Type: This is basically a shortest path problem and can be solved by Dijkstra
shortest path algorithm, BFS or DFS.
Difficulty Level: 4 (Medium Easy).
How to Solve: Not required.

Problem D – Understanding Recursion

Type: Recursion Understanding or guesswork.
Difficulty Level: 3(Easy).
How to Solve: This problem can be solved quickly by someone if he understands
recursion. But this problem can also be solved by typing the given program, testing it
with different inputs and then some guess works will do fine. Someone just needs to
realize quickly that memorization with the given code will not work as the memory
required for that is too large.

 16

Problem E – Matrissor

Type: A Dynamic Programming problem
Difficulty Level: 8 (Hard), Difficult as it requires some analysis, why DP approach
will work in this case.
How to Solve: Consider you know the optimal answer for N matrices and also know
the minimum number of multiplications you will require at last level. You can get a
partition of N to (N-k)th matrices. You know the optimal answer for 1 to (N-k+1)
matrices and minimum steps to multiply (N-k)th to Nth matrix. Now try to find out,
what is the minimum steps if we want to multiply 1 to (N-k+1) matrices and resultant
of (N-k)th to Nth matrices. Also remember, how many multiplications will be
necessary in the last level of multiplication.

Problem F – Altitude Triangle

Type: Pure coordinate geometric problem
Difficulty level: 5, Easy if you have quite good conception of geometry.
How to solve: The key hint to solve this problem is the following sentence in the
problem statement:

“It can be proved that O is the in center of triangle ABC.”

So angle DEF is actually formed by the external bisectors of angle A, B and C.

Problem G – The Ultimate Bamboo Eater

Type: Algorithmic (Dynamic programming + 2-D Interval Tree)
Difficulty level: 9 (Very Hard)
How to solve: Construct a directed graph in which nodes and bamboo lands.
Connect every node u to all nodes that are can be reached from u directly. Then the
problem is to find the longest path in DAG, which is a typical problem solvable via
dp(dynamic programming).

let d[u] be the length of longest path from the starting node to u. We compute d[u] in
increasing order of deliciousness, with the formula d[u] = max{d[v]}+1, where there is
an arc v->u. A straightforward implementation runs in O(n^2), where for each u we
check every v to select the maximum.

To speed it up, notice that all nodes that needs to be checked lies in a square, thus
we need a data structure to support fast maximum-in-square and insert (we are
inserting every node in order of delicousness) quickly. 2D Interval Tree is such a
data structure, since both operation runs in O((logn)^2) so the total
time complexity is O(n(logn)^2).

Reference:
Rujia Liu, Liang Huang, Art of Algorithm and Programming Contests, Tsinghua

 17

University Press, 2004. (currently only Chinese edition is available)

Problem H – Counting Triangles

Type: Number theory, combinatorics, dynamic programming (Optional).
Difficulty: 7 (Hard).
How to Solve: This problem is not as easy as it looks. It can be solved in 2 or 3
ways but it has several wrong ways to solve as well. That is why this problem is
tricky. The primary judge solution was written based on the idea of counting the
number of triangles within a bounding box and then calculating the total result by
considering all possible bounding box.

