
The 2004 ACM ASIA
Programming Contest

Dhaka Site

Sponsored by IBM
Hosted by North South University

Dhaka, Bangladesh

7-8th October 2004
You get 15 Pages

8 Problems

 1

Problem A

All Integer Average
Input File: a.in

Output: Standard Output

When we need to find the arithmetic average of some numbers we always tend to keep the result in
a floating-point number as in many cases the average is a fraction. But if all the numbers are
integers then we should not use floating-point numbers to store the average, as floating-point
numbers can lead to all sorts of precision errors. In this problem your job is to find the average of

some integers and express it in the form
c
baor

c
bora , where a, b and c are all integers. In this

problem we will denote this average as avg.

a) If |avg|>1 and a fractional number then we should print it as
c
ba .

b) If |avg|<1 and a fractional number then we should print it as
c
b .

c) If avg is an integer we should print it as a .

d) If avg is negative then the whole result should be preceded by a minus (‘-’) sign and a

space.

e) In the printed fractional part b and c should be relative prime. In other words gcd(b,c)
should be 1.

f) The horizontal bar in the fraction should be formed using only the hyphen (‘-’). Its length

should be equal to the number of digits in c. If the number of digits in b is less than c then b
should be right justified on the horizontal bar.

Input
The input file contains less than 101 sets of input. Each set of input is given in a single line. The
description of each line is given below:

The first integer n(1≤n≤100) of a line denotes how many numbers are to be averaged. It is followed
by n numbers, all of which have absolute values less than 10000.

Input is terminated by a case where n=0. This case should not be processed.

Output
For each line of input produce two or four lines of outputs. The first line contains the serial number
of the output. The next one or three lines contain the value of the average following the rules
specified above. The output lines should not contain any trailing spaces. And there must not be any
leading or trailing spaces other than the ones that are required for formatting.

 2

Sample Input Output for Sample Input
3 1 2 3
3 –1 –2 –3
3 1 2 4
4 2 4 6 10
3 –1 –2 –4
10 1 1 1 1 1 1 1 1 1 4
10 1 –1 1 –1 1 –1 –1 1 1 1
10 1 –1 1 –1 1 –1 –1 1 1 -3
0

Case 1:
2
Case 2:
- 2
Case 3:
 1
2-
 3
Case 4:
 1
5-
 2
Case 5:
 1
- 2-
 3
Case 6:
 3
1--
 10
Case 7:
1
-
5
Case 8:
 1
- -
 5

 3

Problem B

Overlaying Maps
Input File: b.in

Output: Standard Output

In the picture below you can see two rectangles ABCD and A1B1C1D1. They are two rectangular
maps of the same rectangular region. The size of the two maps is different but their aspect ratio is
the same. This means AB/A1B1=AD/A1D1.

Mathematicians say that there is
always a geographical location on
the bigger map such that the same
location on the smaller map lies
just straight above. So you can
mark this location with one
needle on both the maps at the
same time. In the figure on the
left, point E is such a point. Given
the orientation of the two maps of
the same rectangular area your
job is to find this special point.
You can assume that the bigger
map is ABCD and the smaller
map is A1B1C1D1. You can also

assume that point A is always at the origin, and one side of the bigger map is always in parallel
with the x-axis. So obviously the other side is always in parallel with the y-axis.

Input
On the first line there will be T (1≤T≤500), the number of test cases. Each case is represented by
five lines. First of them will contain the coordinates of point C. The next four lines will contain
coordinates of points A1, B1, C1 and D1 respectively. You can assume that (10≤AB, AC≤100) and
0.1≤(A1B1/AB) ≤0.9.

Output
For each test case you must produce one line of output: the coordinates of the desired point with
four digits after the decimal point. You can always assume that there will be one such point.

 4

Sample Input Output for Sample Input
2
8.0000000000 6.0000000000
2.0000000000 1.0000000000
6.0000000000 1.0000000000
6.0000000000 4.0000000000
2.0000000000 4.0000000000
34.0000000000000000 49.0000000000000000
18.2078241256558856 32.1681558770129171
22.7579122488961215 27.1147710637666363
30.0407315385745850 33.6722510060834468
25.4906434153343492 38.7256358193297276

4.0000 2.0000
26.6101 32.5721

 5

Problem C

Reverse Assignment
Input File: c.in

Output: Standard Output

Alex has a simple assignment in his hand: counting the number of divisors of a given positive
number M. For example the number 60 has 12 divisors 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 and 60.
Although it is very easy task, finding the reverse is not that easy. If you are given the number of
divisors D of an unknown positive number M, it is not very easy to find M and in all cases there are
more than one solution. The boring and easy assignments given by his teachers do not keep
intelligent Alex interested for long. So he is trying to solve this rather difficult task now. Can you
help him?

Input
The input file contains several lines of input. Each line contains an integer D (0<D≤5000). Input is
terminated by a line, which contains a number 0. This line should not be processed.

Output
For each line of input except the last one you should produce one line of output. This line should
contain the serial number of output followed by a positive number M less than (1015+1) whose
number of divisors is exactly D. If there is no such number M less than (1015+1) whose total
number of divisors is D, print the word “Impossible” without the quotes. If there is more than one
possible value of M within the specified range, print the smallest one. Look at the output for sample
input for details.

Sample Input Output for Sample Input
3
4
12
60
4911
0

Case 1: 4
Case 2: 6
Case 3: 60
Case 4: 5040
Case 5: Impossible

 6

Problem D

Zeros and Ones
Input File: d.in

Output: Standard Output

Binary numbers and their pattern of bits are always very interesting to computer programmers. In
this problem you need to count the number of positive binary numbers that have the following
properties:

o The numbers are exactly N bits wide and they have no leading zeros.
o The frequency of zeros and ones are equal.
o The numbers are multiples of K.

Input
The input file contains several test cases. The first line of the input gives you the number of test
cases, T (1≤T≤100). Then T test cases will follow, each in one line. The input for each test case
consists of two integers, N (1≤N≤64) and K (0≤K≤100).

Output
For each set of input print the test case number first. Then print the number of binary numbers that
have the property that we mentioned.

Sample Input Output for Sample Input
5
6 3
6 4
6 2
26 3
64 2

Case 1: 1
Case 2: 3
Case 3: 6
Case 4: 1662453
Case 5: 465428353255261088

Illustration
Here’s a table showing the possible numbers for some of the sample test cases:
6 3 6 4 6 2
101010 111000

110100
101100

111000
110100
101100
110010
101010
100110

 7

Problem E

Count the Points Inside
Input File: e.in

Output: Standard Output

We know that if three different points are not collinear then there is a unique circle that passes
through them. When three points are collinear we get a unique straight line passing through them
and a straight line can be considered as part of a circle of infinite radius. Given several thousand
points and three special points A, B and C in a two dimensional Cartesian coordinate system your
job is to find out how many points are contained in the circle passing through the three special
points. Please note that your solution must be very efficient.

In the figure above the three special points are shown as small filled circles and normal
points are shown as small filled squares. In Figure 1 we can see a circle passing through
three special points A, B and C. There is also a normal point D. There are total five points
strictly within the circle and three points are on the boundary. So the circle contains eight
points in total. When the point D is turned into special point C we get another circle, which
is shown, in Figure 2. This larger circle contains total nine points.

Input
The input file contains at most ten sets of input. The description of each set is given below.

First line of each set contains six integers Ax, Ay, Bx, By, N and Q. Here (Ax, Ay) is the coordinate
of A and (Bx, By) is the coordinate of B, N (0<N≤50000) is the total number of points (excluding A
and B) and Q (1≤Q≤1000) is the number of queries. Each of the next N lines contains two integers
xi, yi, where (xi, yi) is the Cartesian coordinate of the i-th point (1≤i≤N, -10000≤xi, yi ≤10000).
Each of the next Q lines contains one integer SC (1≤SC≤N), which indicates that the SC-th point is
to be considered as point C for the current query. For example, in the first sample input the point
with serial no 4 is (5, 5) as there are three points before it ((-1, -1), (-1, -1) and (3,3)) in the input

 8

sequence. Please note that for a single set of input, point A and B are fixed. Only the position of
point C is being altered for each query.

The input is terminated by a case where N=Q=0. This case should not be processed. You can see
from the first sample input that more than one point can have the same coordinate. Such points
should be considered as different points.

Output
For each set of input produce Q+1 lines of output. The description of the output for each set is
given below:

The first line contains the serial number of the output as shown in the output for sample input. Each
of the next Q lines contains an integer D which indicates how many points will be within the circle
passing through A, B and C. The points on the boundary of the circle are also considered inside the
circle. So you should also consider A, B and C within the circle. If the radius of the circle is greater
than 100000 then simply print the line “Impossible” instead of the integer D.

Sample Input Output for Sample Input
0 10 10 0 6 2
-1 -1
-1 -1
3 3
5 5
-1 -1
12 16
4
1
0 10 10 0 8 2
-1 -1
2 2
4 4
6 6
8 8
12 12
14 14
16 16
3
5
0 10 10 0 0 0

Case 1:
Impossible
7
Case 2:
8
7

:

 9

 Problem F

Permutation Primes
Input File: f.in

Output: Standard Output

Permutations of a sequence of decimal digits have an interesting property. Any two permutations of
a sequence of digits have a difference, which is
divisible by 9. For example:

|458967 – 456879| = 2088 = 9 * 232

We won't ask for the proof today (as it is very
easy) but we will focus towards a different aspect
of this property. There are some numbers whose
difference with one (or more) of its permutations
is of the form 9p, where p is a prime less than
3333333. These numbers are called permutation
primes. For example 92-29=63=9*7, where 7 is a
prime. So, 92 is a permutation prime. Now you
have to write a program that finds out the number
of permutation primes within a specified range.

Input
First line of input contains an integer T (0<T<201) denoting the number of test cases to follow.
Then follows T lines each of which contains two positive integers p and q. Both of them are less
than 99999999, without any leading zero(s) and |p-q|<=1000.

Output
There will be one line of output for each test case. At first print “Case i: ” (without the quotes)
where i is an integer denoting the i-th test case starting from one. Then the line will contain an
integer N that denotes the number of permutation primes between p and q (inclusive).

Sample Input Output for Sample Input
2
1 10
1 20

Case 1: 0
Case 2: 5

Note: 20-02=18=9*2, so 20 is a permutation prime but 02 is not a permutation prime because a
permutation prime does not have a leading zero.

 10

Problem G

The Fairy Tale of ICPC
Input File: g.in

Output: Standard Output

It is now year 3004, the ACM ICPC Programming Contest is still one of the largest and most
prestigious Programming Contest of the World. This contest began almost 1030 years ago and
many don’t remember the history of this contest now. Some say that there is a wonderful story
behind this contest. The story goes as follows:

ong long ago there lived a happy dove couple who
loved each other very much. They were living
peacefully but one day the female dove became very

ill. The male dove began roaming around everywhere looking
for proper medicine and found a wizard who knew the cure.
But the wizard would only give him (male dove) the medicine
if he could solve a problem for him, which was in the wizard’s
mind for a long time. As the problem was quite hard the male
dove could not solve it. At that time a few very kind men
came to his rescue. They gathered all the brilliant
programmers from all over the world just to solve the wizard’s
problem, this gathering was known as the first ACM ICPC
World Finals. The Wizard’s problem was solved and the
female dove got cured. Nice story! Isn’t it? But the real problem is that now you have to solve this
problem on your own.

Figure 1 Figure 2

The wizard’s problem was related to a chessboard. Given an m*n chessboard (m=number of rows
and n=number of columns) one has to go from the lower left corner to the upper right corner. The

L

 11

lower left corner is numbered as (0,0) and the upper right corner is marked as (m-1, n-1) as shown
in Figure 1. But in each step one can only jump to another box that is p blocks away in the
horizontal direction and q blocks away in the vertical direction or vice versa. No such moves,
which would take one away from the destination, are allowed. So if the value p=1 and q=3 and one
is in the r-th row and c-th column or location (r, c) then he can only jump to location (r+1, c+3) or
(r+3, c+1) but he cannot jump to locations like (r-1, c+1) or (r-1, c-1) etc. In Figure 2 we can see a
situation where p=2 and q=1 (or p=1 and q=2). It shows two of the total six possible ways
(considering that no square is blocked) of going from the lower left corner to the upper right corner
and each of these two ways requires four steps to reach the destination. It also shows that the square
at (2, 4) (row 2, column 4) is blocked, which has ruled out the possibility of a path through that
square. Given the value of m, n, p and q and position of the squares which are blocked, your job is
to find out the number of steps one requires to reach the destination and also the total number of
possible ways to reach the destination.

Input
The input file contains less than 100 sets of inputs. The description of each set is given below:

Each line contains five integers m, n (6<m, n<4001), p, q(0<p, q<10) and b(0≤b≤10). The
meaning of m, n, p and q are described in the problem statement above. The integer b denotes the
number of squares that are blocked. Each of the next b lines contains two integers (ri, ci) which
denotes the row and column of the i-th blocked square.

Input is terminated by a set where the value of m=n=0. This set should not be processed. Please
note that at least 90% of the input test cases follow the limit (6<m,n<300).

Output
For each set of input produce one line of output, which contains two integers C and W. Here C is
the number of steps required to go from the lower left corner to the upper right corner and W is the
total possible ways one can go from lower left corner to the upper right corner. If it is impossible to
go from the lower left corner to the upper right corner with the given configuration then print a line
“Impossible” instead as shown in the output for sample input. W can have at most 802 digits.

Sample Input Output for Sample Input
8 7 1 2 2
2 1
1 2
8 8 1 3 0
49 49 2 1 0
93 109 3 1 1
24 16
108 50 3 1 6
85 47
45 23
54 34
24 40
40 24
82 46
0 0 0 0 0

Case 1: Impossible
Case 2: Impossible
Case 3: 32 601080390
Case 4: 50 64542614482000
Case 5: 39 376817

 12

Problem H

Guinea Rats
Input File: h.in

Output: Standard Output

Rats like many other rodents are used in
the labs for scientific experiments. But
unlike many cruel surgical experiments our
experiment on the rats would be a
rewarding psychological one. We are
trying to establish the fact that the rats have
a good cognitive map in their brain – they
have a good sense of directions. Here we
would like to give an empirical proof to
support our claim.

In our experiment, we build a maze for our rats. This
maze is basically a rectangular grid of cells. There are
tunnels that lead from one cell to another. Because of
the rectangular arrangement, the tunnels can run in
the four major directions only. From the cell at
location (i, j) the rats may go East to (i, j+1), West to
(i, j-1), North to (i-1, j) and South to (i+1, j) as shown
in the figure on the right. These tunnels are directed.
Thus a tunnel that takes a rat from cell from (i, j) to (i,
j-1) not necessarily provides a path to get back to cell
(i, j). Some of these tunnels are open ended, if a rat
goes through that tunnel, it would fall out of the
maze. Now we allure the rats by putting mouth
watering cheese cuts in some particular cells. Our
experiment requires the rats to be trained to remember
the sequence of E (East), W (West), N (North), S
(South) moves that lead them to these cheese cuts.

We train a rat by releasing it in a designated start cell in the maze. Then it goes through the maze at
its own will – taking the EWNS turns whimsically. But at some point in time it is bound to lose its
vigor and stop moving. Then we take the rat out from the maze. If it stopped on a cell that
contained a cheese cut we reward it with another cheese cut, leaving the original one in the maze;
but if it stops on a cell that does not have any cheese cut, it goes unrewarded. One may wonder
what would happen if the rat falls out of the board by following an open ended tunnel. Our
explanation is simple, we put cheese cuts only in some particular cells in the maze – there is no
cheese cuts in the world outside. So if a rat falls out it doesn’t get any cheese.

We have seen that after training a rat several times in this way it seems to remember the rewarding
move sequences correctly. Our experiment requires that we release the rat in the same starting cell
and the cheese cuts are placed in exactly the same cells every time we put it in the maze. So if the
rat finds that some “EESSWNNS” leads it to a cheese cut, it would always find a cheese cut with

 13

that sequence of moves. Our smart rat only needs to differentiate the moves that are rewarding from
the ones that are not. However, your task is not as simple as that.

We plan to train our rat in a maze and test its learning ability in a different maze. But to do that we
need to make sure that these two mazes are identical. For our purpose identical mazes not
necessarily mean identically constructed mazes. What we need is that they would be identical to the
rats. If a rat has a sequence of moves leading to a cheese cut in the training maze, it would also
get a cheese cut with the same sequence of moves in the new maze. And if a sequence of moves
leads it to nothing in the training maze, the same sequence must be unrewarding for the rat in
the new maze. This is where we need your help. Your task is to take the configuration of the two
mazes as input, and tell us if they are identical from the rat’s perspective.

Input
The input file contains several test cases. The first line of the input gives you the number of test
cases, T (1≤T≤25). Then T pairs of maze configuration will follow. The first line of a maze
configuration starts with the dimension – the number of rows R (1≤R≤20) and the number of
columns C (1≤C≤20) for the maze. Each of the next R lines would describe the C cells in that
column. Each cell is represented by a 4-bit number (numbers in the range 0 to 15). These numbers
allows us to list all possible outgoing tunnels. The outgoing tunnels for North, East, South and
West are represented by the 0th, 1st, 2nd and 3rd bits respectively. If a bit is set to zero then the tunnel
in that direction is open ended – leading the rat out of the maze; whereas a bit set to one indicates
that the rat can go to the next cell in that particular direction. We label the cells in the maze in row
major order starting from 0. After the description of the maze cells, the next line would give you
the label of the starting cell for that maze. The first integer in the next line would give you the
number of cells that would contain cheese cuts. Then that many cell labels will follow in the same
line. You may find it helpful to relate the images in the illustration section to the second sample
input.

Output
For each set of input print the test case number first. Then print “Yes” if our rat would find the pair
of mazes to be identical, otherwise print “No”. The Sample Input/Output section will clarify the
formatting issues.

 14

Sample Input Output for Sample Input
2
3 3
6 4 0
2 10 0
3 11 8
1
3 4 7 8
2 3
6 4 4
2 10 1
1
2 0 4
3 3
6 4 0
2 10 0
3 11 8
0
3 4 7 8
2 3
6 12 4
2 10 1
1
2 0 4

Case 1: Yes
Case 2: No

Illustration
The following pictures illustrate the second sample test case. The numbers in the cells denote the
cell labels, the rat shows the starting cell and the cheese cuts show the cells that would contain the
cheese cuts. In the first maze the rat falls out of the maze if it takes a west bound move, thus fails to
get any cheese. But in the second maze a west bound move would earn it a cheese cut.

