In addition to scalability, another often cited benefit of deep learning models is their ability to perform automatic feature extraction from raw data, also called feature learning.
Yoshua Bengio is another leader in deep learning although began with a strong interest in the automatic feature learning that large neural networks are capable of achieving.
He describes deep learning in terms of the algorithms ability to discover and learn good representations using feature learning. In his 2012 paper titled “Deep Learning of Representations for Unsupervised and Transfer Learning” he commented:
Deep learning algorithms seek to exploit the unknown structure in the input distribution in order to discover good representations, often at multiple levels, with higher-level learned features defined in terms of lower-level features
An elaborated perspective of deep learning along these lines is provided in his 2009 technical report titled “Learning deep architectures for AI” where he emphasizes the importance the hierarchy in feature learning.
Deep learning methods aim at learning feature hierarchies with features from higher levels of the hierarchy formed by the composition of lower level features. Automatically learning features at multiple levels of abstraction allow a system to learn complex functions mapping the input to the output directly from data, without depending completely on human-crafted features.
In the soon to be published book titled “Deep Learning” co-authored with Ian Goodfellow and Aaron Courville, they define deep learning in terms of the depth of the architecture of the models.
The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones. If we draw a graph showing how these concepts are built on top of each other, the graph is deep, with many layers. For this reason, we call this approach to AI deep learning.
This is an important book and will likely become the definitive resource for the field for some time. The book goes on to describe multilayer perceptrons as an algorithm used in the field of deep learning, giving the idea that deep learning has subsumed artificial neural networks.
The quintessential example of a deep learning model is the feedforward deep network or multilayer perceptron (MLP).
Peter Norvig is the Director of Research at Google and famous for his textbook on AI titled “Artificial Intelligence: A Modern Approach“.
In a 2016 talk he gave titled “Deep Learning and Understandability versus Software Engineering and Verification” he defined deep learning in a very similar way to Yoshua, focusing on the power of abstraction permitted by using a deeper network structure.
a kind of learning where the representation you form have several levels of abstraction, rather than a direct input to output
Reference:
machinelearningmastery.com